Rūta Inčiūraitė

NAUJAI ANOTUOTŲ MIKRONR RAIŠKOS POKYČIAI IN VITRO, NUSLOPINUS PAGRINDINIUS MIKRONR BIOGENEZĖS ELEMENTUS
Baigiamasis magistro darbas

Darbo vadovė
Dr. Jurgita Skiecevičienė

Darbo konsultantas
Dr. Simonas Juzėnas

Kaunas, 2019 m.
TURINYS

SANTRAUKA .. 4
SUMMARY .. 6
PADĖKA.. 8
SANTRUMPOS .. 9
ĮVADAS .. 11
DARBO TIKSLAS IR UŽDAVINIAI ... 12
1. LITERATŪROS APŽVALGA ... 13
 1.1. Kanoninis miRNR biogenezės kelia .. 13
 1.1.1. MiRNR transkripcija ... 13
 1.1.2. Apdorojimas branduolyje ... 15
 1.1.3. Išnešimas į citoplazmą ... 18
 1.1.4. Citoplazminis pre-miRNR apdorojimas ... 19
 1.1.5. RNR-indukuojamo nutildymo komplekso formavimasis ... 22
 1.2. Alternatyvūs miRNR biogenezės kelia .. 25
 1.2.1. Drosha/DGCR8-priklausoma, Dicer-nepriklausoma biogenezė .. 25
 1.2.2. Drosha/DGCR8-nepriklausoma, Dicer-priklausoma biogenezė .. 26
 1.2.3. Drosha/DGCR8-nepriklausoma, Dicer-nepriklausoma biogenezė .. 27
 1.3. MiRNR taikinių nutildymas ir suardymas ... 28
 1.3.1. MiRNR ir taikininių iRNR sekos jungimosi taisyklės ... 28
 1.3.2. MiRNR taikininės sekos degradacijos mechanizmas ... 28
 1.3.3. MiRNR tarpininkaujamo transliacijos slopinimo mechanizmas .. 29
2. TYRIMO METODIKA IR METODAI ... 30
 2.1. Tyrimo objektas .. 31
 2.2. Metodai ... 31
 2.2.1. Ląstelių kultivavimas .. 31
 2.2.2. Ląstelių transfekcija .. 33
 2.2.3. Visuminės ląstelių RNR išskyrimas .. 35
 2.2.6. Genų ir miRNR raiškos pokyčių nustatymas kiekvieną tikrojo laiko polimerazės
genominės reakcijos metodu .. 39
 2.2.7. Statistinė analizė .. 41
3. REZULTATAI ... 42
3.1. Eksperimentinis siRNR genų-taikinių raiškos įvertinimas ..42
 3.1.1. Teigiamos kontrolės siRNR geno-taikinio raiškos pokyčiai ..42
 3.1.2. SiRNR genų-taikinių raiškos pokyčiai ..42
3.2. Eksperimentinis kanoninių miRNR raiškos įvertinimas ..44
3.3. Eksperimentinis naujai anotuotų miRNR kandidatų raiškos įvertinimas46
4. REZULTATŲ APTARIMAS ...48
IŠVADOS ..51
PRAKTINĖS REKOMENDACIJOS ..52
LITERATŪROS SĄRAŠAS ...53
Šio magistrinio darbo tikslas buvo nustatyti naujai anotuotų mikroRNR raiškos pokyčius in vitro, nuslopinus pagrindinius kanoninės mikroRNR biogenezės elementus. Šiam tikslui pasiekti buvo iškelti trys uždaviniai:

1. Nuslopinus pagrindinius mikroRNR biogenezės elementus (AGO2, DICER1, DROSHA, DGCR8) in vitro, įvertinti šių elementų genų raišką.

2. Nustatyti kanoniniu mikroRNR biogenezės keliu bręstančių mikroRNR (hsa-miR-16-5p ir hsa-miR-324-5p) raiškos pokyčius in vitro, nuslopinus pagrindinius kanoninės mikroRNR biogenezės elementus.

3. Nustatyti naujai anotuotų mikroRNR (miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p, miR-candidate-329-5p) raiškos pokyčius in vitro po pagrindinių mikroRNR biogenezės elementų nuslopinimo.

Tyrimo metu atlikta genų nutildymas egzogeninėmis siRNR molekulėmis komercinėse ląstelių linijose, visumė ląstelių RNR išgryninta fenolio/chloroformo principu su silikagelio kolonėlėmis, kopijinė DNR susintetinta naudojant atsitiktinius ir specifinius TaqMan pradmenis. Genų, kanoninių miRNR ir naujai anotuotų miRNR kandidatų raiška įvertinta kiekvienės tikrojo laiko polimerazės grandininės reakcijos metodu, naudojant specifinius TaqMan pradmenis, raiškos rezultatai įvertinti $2^{-\Delta\Delta Ct}$ metodu. Statistinė duomenų analizė ir rezultatų vizualizacija atlikta R studio programiniu paketu.

Tyrimo objektas buvo naujai anotuotos miRNR ir jų raiškos pokyčiai in vitro po pagrindinių miRNR biogenezės elementų nuslopinimo. Tyrimo objektai studijuoti pasirinktos komercinės kolorektalinės adenokarcinomos ląstelių linijos (Caco-2 ir HT-29).

Tyrimų rezultatai parodė, kad po poveikio siRNR Caco-2 ir HT-29 ląstelių linijose DGCR8 geno raiška iRNR lygmenyje reikšmingai nepakito, o DROSHA, DICER1 ir AGO2 – reikšmingai sumažėjo. Poveikis siRNR molekulėmis sąlygojo reikšmingą kanoniniu keliu bręstančios hsa-miR-324-5p raiškos
sumažėjimą Caco-2 ir HT-29 ląstelių linijose ir hsa-miR-16-5p raiškos sumažėjimą Caco-2 ląstelių linijoje. Naujai anotuotų miRNR kandidatų analizė parodė, kad nutildžius pagrindinius kanoninės miRNR biogenezės elementus miR-candidate-8-3p, miR-candidate-17-3p, ir miR-candidate-329-5p raiška reikšmingai nepakito.

Siekiant patvirtinti nustatytus kanoninių miRNR raiškos pokyčius ir patikslinti naujai anotuotų miRNR kandidatų raiškos pokyčius po pagrindinių kanoninės miRNR biogenezės elementų nuslopinimo, būtų tikslinga kTL-PGR metodu tirtiems mėginiams atlikti mažųjų RNR sekoskaitą. Mažųjų RNR sekoskaitos duomenų analizė leistų įvertinti ir kTL-PGR metu neaptikto miR-candidate-32-2p kandidato, ir likusių, šiame darbe netyrinėtų, kandidatų raišką in vitro eksperimentinėmis sąlygomis.
The aim of this study was to evaluate changes of novel microRNA expression in vitro after silencing pivotal microRNA biogenesis elements. Therefore, three study objectives were defined:

1. Determine the expression level of the main microRNA biogenesis elements (AGO2, DICER1, DROSHA, DGCR8) in vitro after silencing these elements.
2. Determine the expression level of the canonical microRNAs (hsa-miR-16 and hsa-miR-324-5p) in vitro after silencing the main microRNA biogenesis elements.
3. Determine the expression level of the novel microRNAs (miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p, miR-candidate-329-5p) in vitro after silencing the main microRNA biogenesis elements.

In this study, gene knockdown was performed in commercial cell lines using exogenous siRNA molecules, total RNA was extracted performing phenol/chloroform cell lysis and silica membrane based RNA purification, complementary DNA was synthesised using both random and TaqMan specific primers. The expression of siRNA target genes, canonical miRNAs and novel miRNAs was determined by quantitative real-time polymerase chain reaction using TaqMan Assays. Expression analysis was performed using $2^{-\Delta\Delta Ct}$ method. Statistical analysis and data visualisation was performed using R studio software.

Study objects were the novel microRNAs and their expression changes in vitro after silencing the main microRNA biogenesis elements. For this purpose two commercial colorectal adenocarcinoma cell lines (Caco-2 and HT-29) were chosen.

Results showed that siRNA transfection had no significant effect on DGCR8 expression on mRNA level in both Caco-2 and HT-29 cell lines, while expression of DROSHA, DICER1 and AGO2 on mRNA level significantly decreased under experimental conditions. Silencing of pivotal miRNA biogenesis elements caused significant expression decrease of canonical miRNA hsa-miR-324-5p in both Caco-2 and HT-29 cell lines, while significant results of hsa-miR-16-5p was determined only in Caco-2
cell line. Novel miRNA analysis revealed that the expression of three candidates – miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-329-5p – has not changed significantly after silencing the main miRNA biogenesis elements.

The next generation sequencing is recommended for samples that were analysed using quantitative real time polymerase chain reaction method. Small RNA sequencing data would enable the verification of the results that were obtained in this study as well as determination of expression changes of miR-candidate-32-2p and other novel miRNAs in vitro under experimental conditions.
PADĖKA

SANTRUMPOS

AGO – baltymas Argonautas (angl. argonaute);
AT – atvirkštinė transkripcija;
ATP – adenozino trifosfatas;
bp – bazių pora;
C – karkoksilo;
ChIP-seq – chromatino imunoprecipitacija su sekoskaita (angl. chromatin immunoprecipitation followed by sequencing);
CpG – citozinas, po kurio seka guaninas (angl. cytosine proceeded by guanine);
Cₜ – slenkstinis ciklas (angl. cycle of threshold);
DGCR8 – DiDžordžo kritinis regionas 8 (angl. DiGeorge syndrome critical region 8);
dg-RNR – dvigrandė RNR;
dgRPD – dvigrandę RNR prijungiantis domenas (angl. double stranded RNA-binding domain);
DNR – deoksiribonukleino rūgščias;
eIF4F – eukariotų iniciacijos veiksnys F4 (angl. eucaryotic initiation factor F4);
EXP1 – Eksportinas 1 (angl. Exportin-1);
EXP5 – Eksportinas 5 (angl. Exportin-5);
GTP – guanozino trifosfatas;
iRNR – informacinė RNR;
izomiR – miRNR izoforma;
kb – kilobazė;
kDA – kilodaltonas;
kDNR – kopijinė DNR;
kTL-PGR – kiekvieno tikrojo laiko polimerazės grandinės reakcija;
Mg²⁺ – magnio jonas;
(mi)RISC – (mi)RNR-indukuojamas nutildyimo kompleksas (angl. (mi)RNA induced silencing complex);
miRNR, miR – mikroribonukleino rūgščias;
N – amino;
nt – nukleotidas;
NTR – netransliuojamas regionas (angl. untranslated region);
PACT – Interferono-indukuojamas nuo dvigrandës RNR priklausomas aktyvatorius (angl. Interferon-Inducible Double Stranded RNA Dependent Activator);
PAZ – PIWI-AGO-ZWILLE domenas;
PGR – polimerazës grandininë reakcija;
PIWI – P elemento-indukuojamas wimpy sėklidžių domenas (angl. P element-induced wimpy testis);
Pre-miRNR – miRNR prekursorius (angl. miRNA precursor);
Pri-miRNR – pirminë miRNR (angl. primary miRNA);
Pol – polimerazë;
Pol(A) – adenozinë monofosfatai;
RIIID – RNazës III domenas;
Ran•GTP – GTP rišantis branduolio baltumas;
RNR – ribonukleino rūgštis;
RNRi – RNR interferencija (angl. RNA interference);
RPB – RNR prijungiantis baltymas (angl. RNA-binding protein);
siRNR – mažoji interferuojanti RNR (angl. small interfering/silencing RNA);
ĮVADAS

Mikroribonukleino rūgštys (miRNR) – tai mažosios, 18-25 nukleotidų (nt) ilgio, baltymų nekoduojančios endogeninės molekulės, kurios specifiškai prisijungdamos prie informacinės RNR (iRNR) vykdo potranskripcinę genų raiškos reguliaciją [1,2]. Šios reguliacinės molekulės buvo atrastos 1993 metais [3] Caenorhabditis elegans organizme, o remiantis miRBase duomenų bazės duomenimis šiuo metu yra žinoma nei 2600 subrendusių žmogaus miRNR sektų [4]. Yra įrodyta, kad miRNR atlieka svarbų vaidmenį įvairiuose biologiniuose procesuose, o jų raiškos sutrikimai yra siejami su įvairių ligų etiologija [1,5].

Autorių interesų konfliktų nebuvo.
DARBO TIKSLAS IR UŽDAVINIAI

Darbo tikslas: Nustatyti naujai anotuotų mikroRNR raiškos pokyčius *in vitro*, nuslopinus pagrindinius kanoninės mikroRNR biogenezės elementus.

Darbo uždaviniai:
1. Nuslopinus pagrindinius mikroRNR biogenezės elementus (*AGO2, DICER1, DROSHA, DGCR8*) *in vitro*, įvertinti šių elementų genų raišką.
2. Nustatyti kanoniniu mikroRNR biogenezės keliu bręstančių mikroRNR (hsa-miR-16-5p ir hsa-miR-324-5p) raiškos pokyčius *in vitro*, nuslopinus pagrindinius kanoninės mikroRNR biogenezės elementus.
3. Nustatyti naujai anotuotų mikroRNR (miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p, miR-candidate-329-5p) raiškos pokyčius *in vitro* po pagrindinių mikroRNR biogenezės elementų nuslopinimo.
1. LITERATŪROS APŽVALGA

MikroRNR (miRNR) yra mažos, 18-25 nukleotidų (nt) ilgio, konservatyvios, mažosios baltymų nekoduojančios RNR molekulės, kurių pagrindinė funkcija – geno-taikinio raiškos sloypinimas, iš dalies ar visiškai komplementariai prisijungiant prie iRNR ir taip užkertant kelią tolimesnei baltymo transliaucijai [16–19]. Per genų raiškos reguliaciją šios reguliacinės molekulės kontroluoja daugeli biologinių procesų, įskaitant ląstelių proliferaciją, diferenciaciją, mirtį ir gyvūnų organizmuose yra svarbios beveik visuose vystymosi ir patologiniuose procesuose [17,20]. Kad galėtų atlikti savo funkciją, miRNR pirmiausia turi subręsti, pereidama kelis biogenezės etapus: šis procesas labai griežtai kontroliuojamas gyvūnuose, augaluose, protistuose, virusuose ir priklauso vienai gausiausių genų šeimų [16]. Genai, koduojantys šias trumpas reguliacines molekules, yra išsibarstę po įvairius genominius regionus ir, nors pagrindinės miRNR funkcijos gyvūnuose ir augaluose yra panašios, šių molekulų biogenezės keliai žmogui skiriasi [16,25,26].

1.1. Kanoninis miRNR biogenezės kelias

Dauguma miRNR bręsta kanoniniu biogenezes keliu. Kanoninis miRNR brendimas yra palaipsnis procesas, reguliuojamas skirtinguose molekuliniuose lygjuose. MiRNR biogenezė skiriama į dvi plačias fazes – branduolio ir citoplazminę, kurios abi yra labai svarbios miRNR brendimui [22,23].

Trumpai tariant, miRNR biogenezes branduolio fazėje vyksta miRNR geno transkripcija ir pirminės miRNR (angl. primary miRNA, pri-miRNR) molekulės apdorojimas mikroprocesoriaus kompleksu, sugeneruojant miRNR prekursorių (angl. miRNA precursor, pre-miRNR). Pre-miRNR molekulė sąveikaudama su Eksportinu 5 (angl. Exportin-5, EXP5) pereina branduolio apvalkalą ir toliau apdorojama citoplazmoje antrą kartą kerpa pre-miRNR molekulę ir taip susidaro dvigrandė miRNR, sudaryta iš „vykdančiosios“ (angl. guide) ir „lydinčiosios“ (angl. passenger) grandinių. „Vykdančioji“ grandinė yra iškart inkorporuojama į baltymų kompleksą RISC (angl. RNA induced silencing complex) [6,7,24].

1.1.1. MiRNR transkripcija

1.1.1.1. Genominė organizacija

MiRNR genai yra randami gyvūnuose, augaluose, protistuose, virusuose ir priklauso vienai gausiausių genų šeimų [16]. Genai, koduojantys šias trumpas reguliacines molekules, yra išsibarstę po įvairius genominius regionus ir, nors pagrindinės miRNR funkcijos gyvūnuose ir augaluose yra panašios, šių molekulų biogenezės keliai žmogui skiriasi [16,25,26].
Dauguma gyvūnų miRNR genų yra baltymų nekoduojantys genai, esantys tarpgeniniuose regionuose (52 proc.), ir vienintelis jų produktas yra miRNR molekulė. Likusi dalis miRNR koduojančių genų yra išsidėstę baltymus koduojančių genų netransliuojamuosiuose regionuose (angl. untranslated region, NTR) (8 proc.) arba introniniuose regionuose (40 proc.) [20,26,27]. Žmogaus organizme kanoninių miRNR genai dažniausiai yra koduojančių ar nekoduojančių transkriptų intronuose [16]. Dažnai keletas miRNR lokusų būna išsidėstę labai arti vienas kito, taip suformuodami policistroninį transkripcijos vienetą. MiRNR, esančios vienoje grupėje (angl. cluster), paprastai yra transkribuojamos kartu, tačiau kiekviena miRNR potranskripciniame lygmenyje vėliau gali būti reguliuojama atskirai [16].

1.1.1.2. Pri-miRNR formavimasis ir reguliacija

MiRNR biogenezė prasideda branduolyje, kur RNR polimerazė II (Pol II) transkribuoja miRNR koduojančius genus į ilgus – paprastai, daugiau nei 1 kilobazės (kb) ilgio – pri-miRNR transkriptus (1 pav.) [20–22,28]. MiRNR transkripcija yra vykdoma RNR Pol II, o pats procesas yra kontroliuojamas su RNR Pol II susijusių transkripcijos veiksniai (p53, MYC, ZEB1, ZEB2, MYOD1) ir epigenetinių reguliatorių (histonų acetilinimas, metilinimas ir DNR metilinimas) [7,28–31]. Tarpgeniniuose regionuose esantys miRNR genai turi transkripcijos reguliacijos elementus, tokius kaip promotorius ir terminacijos signalai, o miRNR, esančios baltymus koduojančių genų intronuose, dalinasi promotorių su baltymą koduojančiu genu [16,32].

1 pav. MiRNR koduojančių genų transkripcija ir susiformavusi pri-miRNR molekulė. „G kepūrė” – modifikuotas guanino nukleotidas pri-miRNR 5‘ gale, A(n) – poli(A) uodega pri-miRNR 3‘ gale, raudona spalva – subrendusios miRNR seka (adaptuota iš Ha ir kt., 2014) [16]

Susintetinta pri-miRNR toliau apdorojama panašiai kaip ir baltymus koduojančios iRNR molekulės ir šis etapas užsibaigia pri-miRNR splaisingu, 3’ iRNR galo poliadoleinimu, pridedant keletą adenozinmonofosfatų (poli(A) uodega), ir 5’ modifikavimu, pridedant modifikuotą guanino nukleotidą [22,27,30,33]. Susiformavusi pri-miRNR turi 33–35 bp dvigrandį stiebą (angl. stem), galinę kilpą (angl. terminal loop) ir dvi išsikišusias nestruktūrizuotas viengrandes sekas 5‘ ir 3’ galuose (1 pav.) [1,12].
Vienos pri-miRNR produktas gali būti viena miRNR molekulė arba vienas miRNR klasteris iš dviejų ar daugiau miRNR, kurios sintetinamos iš bendro pirminio transkripto [21].

1.1.2. Apdorojimas branduolyje

1.1.2.1. Pri-miRNR struktūros ypatumai

Drosha baltymo substratas – pri-miRNR molekulė – gali turėti įvairias sekas ir struktūrą, tačiau visada pasižymi keliais bendrais struktūriniais bruožais (2 pav.). Pri-miRNR molekulė yra sektuko formos su maždaug trijų spiralės posūkių dydžio stiebų, kurio abiejose pusėse yra subrendusios miRNR sekos, nuo stiebo pamato išsišakoja nestruktūrizuoti tarpusavyje nesusijungę viengrandės RNR segmentai, o nuo stiebo viršūnės susiformuoja kilpa [34–36]. Visi išvardinti pri-miRNR elementai yra svarbūs šios molekulės apdorojimui [37,38].

2 pav. Pri-miRNR molekulės struktūriniai elementai (adaptuota iš Lee ir kt., 2018) [34]

Pri-miRNR pamato jungtis, kur susijungia stiebas ir nestruktūrizuoti regionai, tarnauja kaip orientyras, arba prisitvirtinimo taškas, mikroprocesoriui, kuris nustato kirpimo vietas [39,40]. Sektuko viršūnės regionas, turintis ≥ 10 nt galinę kilpą, taip pat yra svarbus efektyviam ir tiksliam pri-miRNR apdorojimui [16,40,41]. Be pamatinės ir viršūninės jungčių, keletas pri-miRNR sekos elementų taip pat dalyvauja Drosha vykdomame apdorojime. Tokie struktūriniai žmogaus pri-miRNR determinantai yra: (i) UG motyvas, esantis prie pamatinės Jungties, (ii) CNNC motyvas, esantis apie 17-18 nt nuo 3' kirpimo srities, (iii) nesuderinamas GHG motyvas, esantis pamatinio stiebo viduryje (čia H simbolizuojā bet kurį nukleotidą, išskyrus G), (iv) UGU/GUG motyvas 5', esantis viršūnės kilpos gale [16,34,42]. Skaičiuojama, kad bent 79 proc. žmogaus miRNR molekulių turi bent vieną iš UG, CNNC ar UGU/GUG motyvų [16].
1.1.2.2. Mikroprocesoriaus komplekso struktūra

Po transkripcijos ir pirminių modifikacijų pri-miRNR yra du kartus apdorojama endonukleazių, kad taptų subrendusia miRNR molekule [27]. MiRNR brendimą iniciuoja mikroprocesoriaus kompleksas (3 pav.), kurio molekulinė masė yra vidutiniškai 364 kDA [42]. Šis heterotrimerinis kompleksas yra sudarytas iš dvigrandei RNR (dg-RNR) specifinio RNazės III fermento Drosha molekulės ir dviejų Drosha kofaktoriaus molekulių – RNR-prisijungiančio baltymo DiDžordžo Kritinio Regiono 8 (DGCR8), dar žinomo kaip Pasha D. Melanogaster ir PASH-1 C. elegans organizmuose [34,35,37,43,44].

Pirmasis Mikroprocesoriaus komplekso komponentas yra DGCR8 – apytiksliai 90 kDA dydžio baltymas, randamas nukleoplazmoje ir branduolėliuose [16]. DGCR8 turi keletą domenų, kurių vaidmuo miRNR biogenezėje skiriasi: apie 270 amino rūgščių amino-terminalinis (N-terminalis) regionas su branduolio lokalizacijos signalu (angl. nuclear localization signal, BLS), centrinis RNR-prijungiantis hemo domenas (Rhed), du dg-RNR-prijungiantys domenai (angl. double-stranded RNA-binding domain, dgRPD) ir karboksiilo galo terminalinis (C-terminalinis) regionas (angl. C-terminal tail region, CTG) [42,45]. CTG yra konservatyvus regionas, kuris stabilizuoją Drosha baltymą. DgRPD domene atpažįsta pri-miRNR ir padidina apdorojimo aktyvumą, nespecifiskai sąveika su substratu. Rhed domenas prisijungia hemą, tarpininkauja dimerizacijoje, užtikrina pri-miRNR apdorojimo tikslumą ir didina efektyvumą [16,36,45,46].

Antrasis baltymas, formuojantis Mikroprocesoriaus kompleksą – žmogaus Drosha, dar žinomas kaip RNASEN – yra apytiksliai 160 kDA dydžio nuo Mg$^{2+}$ priklausomas branduolio baltymas, kuris kaip ir DGCR8 turi keletą domenų [47]. Drosha turi N-terminalinį regioną, turtingą proliną (angl. P-rich) ir arginino/serino (angl. R/S-rich) amino rūgštimis, centrinį domeną (CED), du RNazės III domenus (RIIIDA ir RIIIDb) ir C-terminalinį regioną, kuriame yra dgRPD [34,47]. Teigiami, kad N-terminaliniai Drosha domenai nėra būtini pri-miRNR apdorojimo aktyvumui in vitro, bet CED yra nepakeičiamas, užtikrinant Drosha funkciją [42]. Dalyvaujant dviem DGCR8 molekulėms, du RIIID domenai dimerizuojasi ir tarpusavio sąveikos srityje suformuoja vieną apdorojimo centrą [16,34]. Drosha RIIIDA ir RIIIDb dimerizacija yra reikalinga pri-miRNR segtuko 3‘ ir 5‘ grandinių skėlimui atitinkamai [34,42].

1.1.2.3. Mikroprocesoriaus veikimo mechanizmas ir reguliacija

Mikroprocesorius sąveika su daugeliu aukščiau minėtų pri-miRNR cis-elementų ir atpažįsta substratą (3 pav.) [36]. Drosha atpažįsta pamatinius elementus (pamatinę jungtį ir pamatinį UG motyvą) ir išdėsto savo katalitinę centrą apytiksliai per 11 bp nuo pamatinės jungties [36,39]. Iš karto po Drosha
prisijungimo pradedamas pri-miRNR kirpimas apytiksliai vieno spiralinio posūkio atstumu nuo pamatinio segmento ir apytiksliai dviejų spiralinių posūkių atstumų nuo viršūninės kilpos. Prisijungus DGCR8 prie stiebo ir viršūninės kilpos jungties, padidėja pri-miRNR apdorojimo tikslumas ir efektyvumas [34,42,44]. DGCR8 taip pat išdėsto Drosa baltymą numatytose pri-miRNR kirpimo vietose, taip neleisdamas Drosa baltymui prisijungti netikslijoje vietoje ar netinkama kryptimi, kas atitinkamai gali sąlygoti alternatyvų ar neproduktvų pri-miRNR kirpimą [36,42]. Didelis Drosa kirpimo tikslumas yra labai svarbus, kadangi net vieno nukleotido nuokrypis gali nulemti kito miRNR taikinio atsiradimą iRNR sekoje [37,48]. Šis pri-miRNR apdorojimo etapas galiausiai sugeneruoja apytiksliai 70-85 nt ilgio pre-miRNR segtuką, turintį dviejų nukleotidų iškyšą 3' gale (3 pav.) [21,35,49–51].

3 pav. Mikroprocesoriaus kompleksas ir jo vykdomas pri-miRNR molekulės apdorojimas, suformuojant pre-miRNR molekulę. RIIDa ir RIIDb – RNazės III domenai (adaptuota iš Lee ir kt., 2018) [34]

Mikroprocesoriaus komplekso svarbą miRNR biogenezėje bei pačių miRNR reikšmę vystymuisi parodą ir mokslingiai tyriniai. Pavydzžiui, nustatyta, kad pelių be Drosha geno (angl. Drosha-knockout) embrionai žūsta ankstyvose embriogenezės stadijose (apytiksliai 7,5 dieną), o germinacinis DGCR8 nebuvas sąlygoja ankstyvą pelių vystomosi sustojimą, kuris baigiasi kamieninių lastelių proliferacijos ir diferenciacijos defektais [16]. Be to, tarp gyvūnų Drosha ir DGCR8 yra konservatyviai baltymai ir žmogaus genominio regiono, kuriamo yra DGCR8 genas, delekcija sukelia genetinį sutrikimą, vadinamą DiDžordžo sindromu [52].

Egzistuoja daug mechanizmų, kurie kontroliuoja mikroprocesoriaus raiškos lygį, specifiškumą ir aktyvumą [16]. Labai svarbus kontrolinis mechanizmas yra savireguliacinė Drosha ir DGCR8 kilpa: Drosha kerpa segtuką antrame DGCR8 egzone ir destabilizuojà jo iRNR, o DGCR8 stabilizuojà Drosha per baltymo-baltymo sąveiką [53]. Potranslacinės modifikacijos taip pat reikšmingai veikia mikroprocesoriaus baltymų stabilumą, lokalizaciją branduolyje ir pri-miRNR apdorojimo aktyvumą [54,55]. Drosha modifikacijos apima šio baltymo fosforilinimą, acetilinimą, sąveiką su RNR-

1.1.3. Įšneimas į citoplazmą

1.1.3.1. Eksportino 5 struktūra, veikimo principas ir reguliacija

Po apdorojimo Drosha pre-miRNR yra pernešama į citoplazmą, kad būtų užbaigtas jos brendimo procesas [16,65]. Pre-miRNR pernešimas per branduolio poros kompleksus yra priklausomas nuo energijos ir jam reikalingas karioferinų šeimo baltymas Eksportinas 5 (EXP5, koduojamas XPO5 geno), dar vadinamas Ran-rišančiu baltymu 21 (angl. Run-binding protein 21) [49,66]. EXP5 yra laikomas labai svarbiu transporto receptoriumi pre-miRNR molekulėms daugelyje organizmų [67]. EXP5 kartu su guanozino trifosfatą (GTP)-rišančiu branduolio baltymu Ran•GTP suformuoja į beisbolo pirštės panašų struktūrinį pernešimo kompleksą, į kurį supakuojama pre-miRNR (4 pav.) [16,68]. Šis heterotrinaris kompleksas pirštinės apsčioje turi tunelio formos konstrukciją, jungiančią vidinę pirštinės dalį su jos išorine erdve [68].

4 pav. Pre-miRNR molekulės pernešimas į branduolio ir atpalaidavimas citoplazmoje.
Ran•GTP – guanozino trifosfatą rišantis baltymas, Ran•GDP – guanozino difosfatą rišantis baltymas, raudona spalva – subrendusios miRNR seka (adaptuota iš Ha ir kt., 2014) [16]

EXP5 tunelio formos struktūra atpažįsta trumpą 3’ pre-miRNR galo iškyšą ir sąveikauja su ja stipriomis joninėmis ir vandenilinėmis jungtimis. Tuo tarpu beisbolo pirštinės formos dalis uždengia pre-
miRNR stiebo regioną ir taip stabilizuoją dgRNR stiebą bei apsaugo pre-miRNR nuo nukleazių poveikio [16,49,67–69]. EXP5 prisijungia prie Ran•GTP per pre-miRNR N-terminalį ir C-terminalį regionus ir skirtų paviršių krūvių dėka EXP5 C-terminaliniame regione laiko dvigrandį pre-miRNR stiebo regioną [49]. Ran GTPazę-aktyvinantis baltumas, skatinantis GTP hidrolizę kartu su RanBP1 ir/ar RanBP2, yra tik citoplazmoje ir sukelia Ran konformacijos pokyčį tam, kad pre-miRNR būtų išlaisvinta iš EXP5 (4 pav.) [68].

Pre-miRNR nukleocitoplazminė pernaša ir subrendusių miRNR gamybos greitis sveikose ląstelėse yra ribojami ir griežtai reguliuojami EXP5 aktyvumo [66,67,69]. Tačiau EXP5 reguliacija yra mažiausia ištyrinėta iš visų miRNR biogenezės elementų [16]. Yra įrodyta, kad nuo ATM priklausomas nukleocitoplazminis pre-miRNR pernešimas vyksta greičiau, reaguojant į DNR pažaidas [49,70]. Priešingai, yra studijų, kurios atskleidžia, kad ERK aktyvinimas, sąlygojantis EXP5 fosforilinimą, slopina pre-miRNR išnešimą iš branduolio į citoplazmą [49,67,69]. Čia, kai kurie navikai turi mutavusią XPO5 geną, dėl to sutrumpėja EXP5 C-terminalinė galas, dėl to baltymas negali pernešti pre-miRNR ir taip sumažėja subrendusių miRNR lygis [16].

1.1.4. Citoplazminis pre-miRNR apdorojimas

1.1.4.1. Dicer struktūra ir veikimas

Pre-miRNR, perėję į citoplazmą ir atsipalaidavusi nuo EXP5, toliau sąveikauja su ją kerpančiu Dicer baltymu [71]. Žmogaus Dicer yra didelis, apytiksliai 220 kDA dydžio, RNazės III fermentas, struktūrinių sudarytas iš keleto domenų ir veikiantis kartu su kitais baltymais (5 pav.) [16,72,73]. Iš kriogeninės elektronų mikroskopijos studijų duomenų daroma prielaida, kad Dicer yra L formos molekulė, turinti galvą, kūną ir pamatą [16,72]. Pagrindiniai funkciniai Dicer domenai yra išsidėstę nuo N-terminalinio galo iki C-terminalinio galo tokia tvarka: helikazės domenas su DExH/D, TRBP-BD ir HELICc, nežinomos funkcijos domenas DUF283, PAZ (PIWI-AGO-ZWILLE) domenas, RIII Da ir RIII Db domenai ir dgRPD [47,48,72,73]. Visi šie Dicer baltymo komponentai turi skirtingas funkcijas apdorojant pre-miRNR. Dicer helikazės domenas sąveikauja su galine pre-miRNR kilpa (5 pav.) ir palengvina šios molekulės atpažinimą, atskiriant pre-miRNR iš kitų dgRNR [47,74]. Šis domenas užtikrina struktūrinius pamatus substrato speficiškumui, preciziškai išskiriamas pre-miRNR ir teikdamas joms pirmenybę kaip substratams mažųjų RNR biogenezei [75]. DExH/D domenas, esantis L formos Dicer molekulės pame (N-terminaliniam gale), formuoja segtuką šalia RIIDD domeno aktyvios srities ir automatiškai slopina žmogaus Dicer fermento endonukleazinių aktyvumą [72,73]. Kol kas yra mažai
žinoma apie DUF283 domeno funkciją ir vienintelė siūloma šio Dicer baltymo domeno funkcija yra gebėjimas prisijungti prie viengrandžių nukleorūgščių [76]. PAZ domenas įgalina Dicer prisijungimą prie pre-miRNR galų, teikiant pirmenybę 2 nt ilgio iškyšai 3’ gale (5 pav.), kuri prieš tai suformuojama kontaktuojant su Drosha [16]. PAZ domenas turi dvi rišimo kišenes, kurių išsidėstymas erdvėje yra toks, kad jos vienu metu gali būti užimtos 5’ ir 3’ pre-miRNR galų [16,72]. Pirmoji kišenė prisijungia 3’ pre-miRNR galų iškyšų ir turi papildomą kilpą, praturtintą pagrindinėmis amino rūgštimis, kuri keičia kišenės molekulinė paviršiaus ir elektrostatinį potencialą [72,75]. Antroji rišimo kišenė skirta prisijungti miRNR prekursoriaus fosforilintam 5’ galui ir ji reikalinga nustatant kirpimo srities padėtį [47,48,72]. Panašiai kaip ir Drosha, du Dicer R III Da ir R III Db domenai taip pat dimerizuojasi, kad sukurtų katalitinį centrą (5 pav.) [16]. Kiekvienas RNazės III domenas katalizuoją vienos mažosios RNR duplekso grandinės hidrolizę [48].

Regionas tarp Dicer PAZ ir RNazės III domenų veikia kaip „molekulinė liniuotė“, kad būtų pagamintos skirtingos miRNA [16,47]. Dicer skėlimo potencialas pasireiškia apibrėžto ilgio (21-28 nt) miRNA sugeneravimu, matuojačią tirto naudojot miRNA spiralinių galų pagal 3’- ir 5’-skaičiavimo taisykles [16,48,77]. PAZ domenas pritvirtina 3’ pre-miRNA iškyšą ir 5’ fosforilintą galą, o dgRNA stiebas yra išsidėstomas išilgai teigiamai įkrauto baltymų prailgėjimo, kad pasiektų katalitinį Dicer centrą, turinčį RIII Da ir RIII Db domenų (5 pav.) [48,77]. Tokia struktūra nulemia tiksliai pre-miRNA kirpimo srity fiksuotu atstumu, t.y. apie 22 nt nuo 3’ ar 5’ galo [77]. Daugeliu atvejų Dicer kirpimo sritys yra išsidėsčiusios fiksuotu atstumu (paprastai 21-25 nt, priklausomai nuo Dicer tipo ir organizmo rūšies) nuo

5 pav. Pre-miRNA molekulės apdorojimas, dalyvaujant Dicer fermentui su baltymais partneriais. P – fosfato grupė, TRBP – transaktyvacijos atsako elementas RNR-rišantis baltymas (adaptuota iš Ha ir kt., 2014) [16]
3’ dgRNR galų [16]. Dicer skėlimas sukuria 22 nt ilgio dupliksą (5 pav.), sudarytą iš miRNR ir miRNR* grandinių, turinčių 5’ monofosfatus ir laisvas OH grupes 2 nt ilgio iškysoje 3’ gale [22,41,78,79].

Panašiai kaip ir Drosha, Dicer1 viso geno delecija sąlygoja ankstyvą pelių embrionų mirtį (apytiksliai 7,5 embrioninio vystymosi dieną), o embrionų kamieninėse ląstelėse be Dicer1 (angl. Dicer1-knockout) atsiranda stiprių ląstelių diferenciacijos ir proliferacijos defektų [16,80]. Be to, nustatyta, kad sąlyginiai Dicer1 geno išmušimai (angl. knockouts) sukelia sunkius ir įvairius defektus įvairiuose audiniuose [81].

Nors Dicer turi savo RPD, siekdamas efektyviau apdoroti pre-miRNR ir pakrauti miRNR, jis sąveikauja ir su tokiais dgRNR rišančiais veiksniais kaip Interferono-indukuojamas nuo dvigrandės RNR priklausomas aktyvatorius (angl. Interferon-Inducible Double Stranded RNA Dependent Activator, PACT) ir/ar Transaktyvacijos atsako elemento RNR-rišantis baltymas (angl. Transactivation response element RNA-binding protein, TRBP), dar žinomas kaip žmogaus imunodeficito viruso transaktyvacijai jautrus RNR-rišantis baltymas 2 (TARBP2) [47,71,77,79,82]. Šie du dgRPB paralogai turi įtakos Dicer vykdomai apdorojimui, be to, tarpininkauja Dicer baltymui formuojant miRNR izoformas (izomiR), veikia pre-miRNR brendimo tikslumą, stabilizuojant Dicer baltymą [47,75,82–84].

1.1.4.2. Citoplazminio apdorojimo reguliacija

Kaip jau minėta aukščiau, Dicer tikslumas ir stabilumas priklauso nuo dgRPB [16]. Dicer-TRBP kompleksas palaiko stabilų Dicer kiekį ląstelėje, o TARBP2 geno mutacijos lemia TRBP baltymo kiekių sumažėjimą, dėl ko vėliau destabilizuojamas Dicer baltymas ir sumažėja miRNR kiekis [16]. Kiti RPB taip pat atlieka svarbų vaidmenį pre-miRNR apdorojimo procese [16]. Pavyzdžiui, KSRP sąveikauja su pre-miRNR galine kilpa ir palengvina Dicer vykdomą apdorojimą [16,77]. LIN28 baltymai blokuoja pre-let-7 apdorojimą Dicer baltymu, prisijungdami prie galinės šios molekulės kilpos ir skatindami pre-let-7 oligouridilinimą [85]. Pre-let-7, susijungęs su LIN28, 3’ gale yra uridilinamas TUT4 ir/ar TUTase7 [77,85].

Dicer raiška daugelio miRNR taip pat yra kontroliuojama neigiamo grįžtamojo ryšio kilpos principu [16,77]. Pavyzdžiui, let-7 ir miR-103/107 sąveikauja su dauginėmis rišimosi sekomis, išsidėsčiusiomis 3’ NTR arba koduojančiaime Dicer1 iRNR regione [77,86]. Didelis miR-103/107 kiekis mažina Dicer vykdomą miRNR apdorojimą ir tai baigiasi sumažėjusi subrendusių miRNR kiekio – tokia reguliacija laikoma homeostatine Dicer aktyvumo reguliacija [16,77].
1.1.5. **RNR-indukuojamo nutildymo komplekso formavimas**

1.1.5.1. **AGO baltymai**

AGO baltymai (angl. *argonaute*, AGO) yra labai konservatyvūs, plačiai ekspresuojami ir priklausą PIWI/PAZ (PDD) domeną turinčių Baltymų superšeimai, žmogaus organizme apimančiais keturis narius – AGO1-4 [79,87,88]. AGO baltymai, dar žinomi kaip EIF2, formuoja RISC šerdį ir atlieka svarbų vaidmenį miRNR tarpininkaujamame genų raiškos slopinime [16,78,89,90].

Kristalinės AGO baltymų struktūros tyrimas rentgenu atskleidė, kad šie baltymai turi dvi skiltis, sudarytas iš šešių funkcionalių domenų (6 pav.) [91]. N-terminalinė skiltyje dėstosi toki domenai kaip N-terminalinis domenas, nežinomas funkcijos domenas 1785 (DUF1785), anksčiau vadintas jungtuką 1 (L1), ir PAZ domenas, o C-terminalinė skiltis apima jungtuką 2 (L2), vidurinį domeną (angl. *middle*, MID) ir P elemento-indukuojamą *wimpy* sėklidžių domeną (angl. *P element-induced wimpy testis*, PIWI) [47,89,91]. Centrinis plyšys tarp dviejų skilti yra skirtas teigiamai įkrautoms amino rūgščių liekanoms, padedančioms geriau prisijungti neigiamai įkrautą mažąją RNR molekulę [89].

![6 pav. Baltymo Argonauto struktūrinė schema](image-url)
6 pav. Baltymo Argonauto struktūrinė schema. Skirtingomis spalvomis pažymėti šeši funkcinių domenų, apačioje nurodytos pagrindinės jų funkcijos (adaptuota iš Zhu ir kt., 2017) [91]

Kiekvienas AGO domenas turi unikalią funkciją (6 pav.). N-terminalinis domenas yra labai svarbus miRNR-miRNR* duplekso pakrovime ir išvyniojime [87,89]. Be to, N-terminalinis domenas slopina A formas spiralės formavimą iš miRNR „vykdančiosios“ sekos, komplementarios iRNR taikininei sekai (angl. *seed*), dėl to efektyviau vyksta komplementarios taikininės sekos paieška iRNR
molekulėje [16,89]. PAZ domenas atpažįsta ir prisitvirtina prie 3’ miRNR galо, o MID domenas prisijungia prie miRNR grandinės vedlės 5’ galinės monofosfato dalies ir 5’ galinio nukleotido, teikdamas prisijungimo pirmenybę U ar A nukleotidams [16,47,78]. PIWI domenas susilanksto panašiai kaip ir RNazė H, suderina miRNR-taikinės iRNR dupleksą ir užtikrina AGO baltymų endonukleazinį aktyvumą [47,89]. Taikinė iRNR seka yra kerpama tarp nukleotidų, esančių 10 ir 11 pozicijose, komplementarių „vykdančiosios“ sekos 5’ galui [16,91]. Be to, PIWI domenas taip pat tarna, kaip GW182 baltymų prisijungimo platforma, kuri tarpinkauja tolimesniame RNR interferencijos (angl. RNA interference, RNRi) kelyje [89]. Jungtukas L2 sujungia PAZ ir MID domenus, aprėpia N, DUF1785, PIWI ir MID domenus ir taip stabilizuojau visą baltymą. Abu jungtukai L1 ir L2 pakeičia savo konformaciją, kad įsijungtų taikinėnį iRNR. L2 tarna kaip atvykstančios taikinėnės iRNR jutiklis ir pasislenka, kad būtų išvengta susidūrimo su taikinine iRNR, o taikininei iRNR priartėjus prarandama sąveika tarp L1 ir PAZ domeno ir taip sugeneruojamas signalas prisijungti taikinėnė iRNR [89,92]. Nors visi žmogaus AGO baltymai geba prisijungti prie reguliacinių mažųjų RNR ir slopinti genų raišką, AGO2 yra vienintelis, turintis nukleazinį aktyvumą ir gebėjimą perkirpti tobulai komplementarius iRNR sekoje esančius taikinius [16,47,88].

Kaip ir Drosha bei Dicer, AGO2 baltymes taip pat atlieka reikšmingą vaidmenį miRNR biogenezėje, taip veikdamas embrioninį vystymąsi. AGO2 baltymo neturinčių pelių embrionams 9,5–10,5 vystymosi dienų išsivysto keletas anomalijų, sąlygojančių ankstvos embrionų žūtį [16]. Be to, pelės, turintis nukleazinį aktyvumą ir gebęjimą perkirpti tobulai komplementarius iRNR sekoje esančius taikinius [16,47,88].

1.1.5.2. MiRNR duplekso pakrovimas ir išvyniojimas

MiRNR duplekas ant AGO baltymo yra patalpinamas, panaudojant ATP energiją ir padedant šaperonams (karščio šoko baltymui 90 (angl. heat-shock protein 90, Hsp90) ir/ar karščio šoko giminingam baltymui 70 (angl. heat-shock cognate 70, Hsc70)) bei kofaktoriui TRBP (7 pav.) [88,89,91,94–96]. MiRNR duplekas ant AGO baltymo patalpinamas dėl AGO baltymų konformacijos pokyčių. Hsp90 padeda perkelti dvigrandę RNR ant AGO baltymo ir palaikyti savo baltymų konformaciją [78,89]. Svarbiausias veiksny AGO2 baltymo renkantis grandinę yra termodinaminės miRNR-miRNR* duplekso charakteristikos [78,83,87,88]. AGO pakrovimo metu kofaktoriui TRBP yra reikalingas identifikuojant miRNR duplekso „vykdančiąją“ ir „lydinčiąją“ sekas pagal juų 5’ galų terminodinaminį stabilumą ir išdėstant miRNR dupleksą tinkma kryptimi [16,22,78,87]. MiRNR „vykdančiosios“ grandinės 5’ galas jungiasi prie MID domeno, o 3’ galas sąveikauja su PAZ domenu [78]. „Vykdančioji“ grandinė
prisikabina prie AGO baltymo ir tampa stabili [97]. MiRNR duplekso patalpinimo į AGO baltymą procesas stimuliuojamas centrinų – 8-11 pozicijoje esančių – nukleotidų neatitikimų [78,96]. Prie dgRNR duplekso prisijungęs AGO baltymas pakeičia savo konformaciją ir užsidaro po to, kai Hsp90 hidrolizuoja ATP [89,96]. AGO baltymas, susijungęs su miRNR dupleksu, yra vadinamas pre-RISC (7 pav.) [16].

7 pav. MiRNR duplekso pakrovimas į AGO baltymą ir išvyniojimas. Raudona spalva – subrendusi miRNR (adaptuota iš Ha ir kt., 2014) [16]

MiRNR dupleksui susijungus su AGO baltymu, „lydinčioji“ grandinė yra iš karto pašalinama iš pre-RISC ir užbaigiamas RISC brendimas (7 pav.) [16,88]. Retais atvejais AGO2 baltymas gali perkirpti duplekso „lydinčiąją“ grandinę. Tam reikalinga, kad miRNR duplekso centre esantys nukleoūbų būtų visiškai komplementarūs [16,78,89]. „Lydinčioji“ grandinė yra pašalinama naudojant Mg²⁺ jonus ir padedant endonukleazei C3PO ir baltymui TRAX [89,98]. Kadangi didžioji miRNR dupleksų dalis turi centrinūs neatitikimus, žymiai dažnesnis procesas yra santykinai lėtesnis dupleksų išvyniojimas be kirpimo (dar vadinamas apėjimo mechanizmu (angl. bypass mechanism)). Jis yra paspartinamas „vykdančioje“ grandinėje esančių neatitikimų (2-8 ir 12-15 nukleotidų pozicijose) [16,78,89,91]. Išvyniojimo procesas prasideda nuo AGO N-domeno, kuris pakeičia padėtį ir atsidaro ties miRNR duplekso galu, taip išaukdamas „lydinčiosios“ grandinės 5’ galą į PIWI domeną [78,88]. N-domenas susiporuoja su „vykdančiosios“ grandinės 3’ galu ir destabilizuoja miRNR dupleksą, išvyniųjimo metu skatindamas dupleksą praeiti pro g16 patikros tašką (angl. checkpoint), kad sėkmingai būtų pašalinta „lydinčioji“ grandinė [97]. Toliau vykstantis „lydinčiosios“ grandinės pašalinimas iš AGO baltymo yra priklausomas nuo ATP (guminės juostos (angl. rubber band) modelis) [16,89]. AGO baltymas, susijungęs su viengrande miRNR, yra vadinamas subrendusiu RISC arba miRISC (7 pav.) [87]. Bendrai tariant, abi miRNR duplekso grandinės turi nutildymo potencialą, tačiau „vykdančioji“ grandinė paprastai yra žymiai dažnesnė ir biologiškai aktyvesnė nei „lydinčioji“ grandinė [88].
1.1.5.3. RISC reguliacija

AGO baltymai gali būti reguliuojami įvairių modifikacijų. AGO2 baltymai gali būti hidroksilinami prolinio-700 liekanose, taip didinant šio baltymo stabilumą ir dėstymą procesiniuose kūneliuose (angl. processing bodies, P-kūneliai) [77,99]. Labai konservatyvios MID domene esančios tirozinio liekanos (AGO2-Y529) fosforilinimas trukdo prie AGO prisijungtgi miRNR 5’ galui [89]. Be to, AGO baltymo 387 pozicijoje esančio serino (Ser387) fosforilinimas, kurį vykdo kinazė MAPKAPK2, baigiasi AGO pernaša į P-kūnelius. Jei Ser387 yra fosforilinamas Akt3, pasireiškia AGO2 tarpininkaujamos transliacijos slopinimas [16,77,89]. Įrodyta, kad hipoksijos sąlygomis EGFR fosforilina AGO baltymo 393 pozicijoje esančią tirozinio liekaną, o tai nulemia AGO2 atsiskyrimą nuo Dicer ir pre-miRNR apdorojimo slopinimą [77,89]. AGO2 įvairiais atvejais taip pat gali būti poliubikviti nuojamas E3 ligazės Lin41, dar vadinamos TRIM71, kad įvyktų šio baltymo proteosomų vykdoma degradacija [16,77]. Yra žinomas ir homeostazinis tinkamo AGO baltymų kiekio ląstelėje palaikymo mechanizmas. AGO baltymų kiekis kontroliuojamas miRNR biogenezės intensyvumo – kuo jis didesnis, tuo daugiau AGO baltymų kaupiasi ir atvirkščiai [89].

1.2. Alternatyvūs miRNR biogenezės keliai

Yra žinoma, kad egzistuoja alternatyvios miRNR molekulių biogenezės strategijos, praleidžiančios kai kuriuos brendimo etapus, būdingus kanoniniam biogenezės keliiui [16,24]. Didžioji dalis funkcionalių miRNR bręsta kanoniniu biogenezės keliu ir tik apie 1 proc. konservatyvių miRNR yra sintetinamos nepriklausomai nuo Dicer ar Drosha baltymų [16].

1.2.1. Drosha/DGCR8-priklausoma, Dicer-nepriklausoma biogenezė

Yra žinoma tik viena nuo mikroprocesoriaus priklausoma, bet nuo Dicer nepriklausoma miRNR – tai tarp stuburinių konservatyvi eritropoetinė miR-451 (8 pav. A) [16,24,88,100]. Pri-miR-451 apdorojimą vykdo Drosha/DGCR8 komplekas branduolyje ir sugeneruoja per trumpą (apytiksliai 18 bp ilgio) pre-miRNR molekulę. Todėl pre-miR-451 negali apti Dicer substratui ir yra pakraunama tiesiai į AGO baltymus. Susiformavusi per trumpa pre-miR-451 yra pakraunama tiesiai į kirptį negalintį (angl. non-slicing) AGO1 arba yra kerpama 3’ gale nežinomos endonukleazės ir tuomet sujungiama su AGO2 [16,24,88]. Su AGO2 sujungta pre-miR-451 yra kerpama 3’ grandinės viduryje ir taip sugeneruojamas 30 nt ilgio tarpinis produktas (angl. 30-nucleotide-long intermediate species, AGO-cleaved pre-miR-451 (ac-
pre-miR-451)). Poli(A)-specifinė ribonukleazė PARN nukerpa 3‘ ac-pre-miR-451 galą ir taip suformuoja 23 nt ilgio subrendusi miR-451 [16,88].

1.2.2. Drosha/DGCR8-nepriklausoma, Dicer-priklausoma biogenezė

1.2.2.1. Mirtronai

Mirtronų keliai — pirmasis atrastas nekanoninis miRNR biogenezės kelias, kuriam būdinga, kad pre-miRNR yra sugeneruojama vykdant iRNR splaisingą (8 pav. B) [16,24,101]. Po iRNR splaisingo susiformavusi „segtuko potencialą turinti“ struktūra, kurioje yra miRNR koduojanti seka, fermento yra apkarpoma (angl. debranch) ir susilanksto į trumpą stiebo-kilpos struktūrą, primenančią klasikinę pre-miRNR [16,88]. Toliau pre-miRNR segtukas perseina į kanoninį miRNR biogenezės kelią: EXP5 yra pernešamas į citoplazmą, kur vėliau yra apdorojamas Dicer [88]. Remiantis jų 3‘ ir 5‘ iškyšų kilme, mirtronai gali būti suskirstyti į keturias kategorijas: tradiciniai (neturintys iškyšų), 3‘ iškyšą turintys (angl. 3‘-tailed), 5‘ iškyšą turintys (angl. 5‘-tailed) ir abi iškyšas turintys (angl. two-tailed) mirtronai [88]. Kad suformuotų pre-miRNR segtuką, 5‘ ir/ar 3‘ gale papildomas sekas turintys mirtronai turi būti apkarpomi egzonukleazių [16]. Iki šiol augaluose ir žinduoliuose, įskaitant žmones, yra nustatyta daug mirtronų kandidatų, iš kurių dalis (mmu-miR-668, hsa-miR-877, hsa-miR-1224, hsa-miR-1226, hsa-miR-1227, hsa-miR-1229, hsa-miR-1236, hsa-miR-5010) eksperimentiškai yra patvirtinti kTL-PGR ar Northern blot analize [88,102].

1.2.2.2. Endo-shRNR

Endogeninės trumpos segtuko formos RNR (angl. Endogenous short hairpin RNAs, endo-shRNR) taip pat apeina mikroprocesoriaus komplekso apdorojimo etapą (8 pav. B) [16,24]. Pre-miRNR segtuko galai sugeneruojami transkripcijos iniciacijos ir terminacijos, pasibaigiančios segtuko su m7G susiformavimu [88]. Tokia pre-miRNR struktūra į citoplazmą pernešama snoRNR eksporto mechanizmo ir toliau perseina į kanoninį biogenezės kelią kaip Dicer substratas [16,88].

1.2.2.3. Sno-RNR

Mažosios branduolėlių RNR (angl. small nucleolar RNAs, sno-RNR) yra randamos daugelio organizmų branduolėliuose [24]. Šios mažos (60-170 nt ilgio) nekoduojančios RNR molekulės vykdo potranskripcines kitų nekoduojančių RNR, pavyzdžiui, rRNR, snRNR, modifikacijas. Yra įrodymų, kad
keletas snoRNR geba būti apdorotos ir suformuoti į miRNR panašias molekules su reguliaciniu potencialu (8 pav. B) [88]. Tačiau ši molekulių grupė kol kas yra mažai ištyrinėta.

8 pav. Alternatyvūs miRNR brendimo keliai. A - Drosha/DGCR8-priklausoma, Dicer-nepriklausoma biogenezė; B - Drosha/DGCR8-nepriklausoma, Dicer-priklausoma biogenezė; C - Drosha/DGCR8-nepriklausoma, Dicer-nepriklausoma biogenezė (adaptuota iš Daugaard ir kt., 2017) [88]

1.2.3. Drosha/DGCR8-nepriklausoma, Dicer-nepriklausoma biogenezė

Agotronai – naujausia atrasta evoliuciškai konservatyvi RNR klasė [103]. Šiai klasei priklausančios RNR molekulės išvengia viso kanoninio miRNR biogenezės kelio ir yra laikomos pirmaisiais endogeniniais Drosha/DGCR8- ir Dicer-nepriklausomos biogenezės pavyzdžiais (8 pav. C). Panašiai kaip mitronai, agotronai yra transkribuojami nuo geno „šeimininko“ introno, tačiau praleidžia Dicer apdorojimą [88]. Po to agotronai yra pernešami į citoplazmą iki šiol nežinomo mechanizmo (galimai EXP5) ir neapdoroti (apie 100 nt ilgio) pakraunami ant AGO baltymų [104]. Yra įrodymų, kad nors agotronų kiekis ląstelėje yra mažesnis nei klasikinių miRNR, šios klasės molekulės geba reguliuoti genų raišką per seką, komplementarią taikininius iRNR sekai, nors subrendusių agotronų ilgis yra didesnis nei kanoninių miRNR, o antrinė struktūra – sudėtingesnė [88].
1.3. MiRNR taikinių nutildymas ir suardymas

Subrendusios miRNR molekulės reguliuoja genų-taikinių raišką potranskripciniame lygmenyje, veikdamos miRISC komplekse. Taikinių raiškos slopinimas vyksta per keletą skirtingų mechanizmų ir nevienodai paveikia taikininkų iRNR molekulų. Žmogaus miRNR labai retai būna pakankamai komplementarios taikininei iRNR sekai, kad AGO2 perskelčia iRNR grandinę [97]. Vietoje to, miRISC, nukreiptas taikininės iRNR sekos link, truko iRNR raišką, indukuodamas translaciojos slopinimą, iRNR deadenilinimą ir iRNR skilimą/degradaciją (9 pav.) [18,19,22,88,105,106].

1.3.1. MiRNR ir taikininės iRNR sekos jungimosi taisyklės

Idealus komplementarumas tarp miRNR ir jų genų-taikinių sekų nėra būtinas, kad vyktų genų nutildymas, o tam tikri miRNR sekos nukleotidai yra svarbūs už kitus [107]. Žmogaus miRNR įprastai „pasirenka“ savo iRNR taikinius remiantis daliniu sekų komplementarumu tarp evoliuciškai konservatyvaus miRNR sekos fragmento (2-7 arba 2-8 nt nuo 5' galo, angl. seed site) ir iRNR 3'-NTR, tačiau ir toliau nuo minėto miRNR sekos fragmento (dažniausiai 8, rečiau – 13-16) taip pat yra reikšmingi miRNR taikininės sekos atpažinime [16,88]. MiRNR ir jos taikininės iRNR kompleksas susiformuoja šių molekulių nukleotidams jungiantis pagal Vatsono-Kriko modelį [107].

Dalinis sekų komplementarumas leidžia vienai miRNR molekulei turėti taikininės sekas šimtuose skirtų iRNR molekulių [88,105]. Skaičiuojama, kad daugiau nei 60 proc. visų žmogaus baltymų koduojančių genų turi bent vieną konservatyvią miRNR prisijungimo sritį [88,108,109].

1.3.2. MiRNR taikininės sekos degradacijos mechanizmas

Viso genomo ir ribosomų profiliavimo tyrimai atskleidė, kad genų taikinių degradacija yra labai dažnas miRNR poveikio rezultatas [18,22,87]. Per pastarąjį dešimtmetį yra paskelbta daug skirtingų miRNR taikinių nutildymo proceso modelių, tačiau šiuo metu labiausiai naudojamas yra AGO ir trijų GW182 žmogaus baltymų – TNRC6A/B/C (angl. Trinucleotide Repeat Containing 6, TNRC6) – modelis (9 pav.) [17,47,88,97,105].

GW182 baltymai susideda iš N-terminalinio AGO-prijungiančio domeno (angl. AGO-binding domain, ABD) ir nutildymo domeno (angl. silencing domain, SD) [18,47]. Eukariotų iniciaciøjų veiksnių 4F (angl. eucaryotic initiation factor F4, eIF4F) komplekso baltymas adapteris eIF4G ir citoplazminio poli(A)-prijungiantis baltymas (angl. poly(A)-binding protein, PABPC) tarp iRNR 5’ kepurės ir poli(A)
uodegos suformuoja uždaros kilpos struktūrą. Su šia struktūra sąveikauja TNRC6A/B/C baltymai, kurie kartu į procesą įjungia ir citoplazminius deadenilazės kompleksus PAN2-PAN3 ir CCR4-NOT (angl. Carbon catabolite repression 4-negative on TATA-less) [18,47,88,105,108]. PAN2-PAN3 ir CCR4-NOT kompleksai katalizuoją taikininės iRNR sekos deadenilinimą [18]. Žinduolių organizmuose CCR4-NOT kompleksas koordinuoja iRNR deadenilinimą tiek tiesiogiai, tiek netiesiogiai, sąveikaudamas su iRNR 5’ galą hidrolizuojančiais (angl. decapping) veiksnius – DEZ dėžutės baltymai 6 (angl. DEAD box protein 6, DDX6) ir PATL1 – kurie savo ruožtu sąveikauja su papildomais 5’ galo G kepurės hidrolizės komplekso komponentais, taip užtikrindami fizinę jungtį tarp deadenilinimio ir 5’ galo G kepurės hidrolizės [18,22,105,110,111]. Gyvūnų ląstelių kultūrose deadenilintos iRNR yra hidrolizuojamos 5’ G kepurės regione, veikiant DCP2 baltymui (angl. decapping protein 2) su kofaktoriais DCP1, EDC3, EDC4, PATL1, DDX6, ir galiausiai degraduojamos 5’→3’ kryptimi pagrindinės citoplazminės nukleazės – egzoribonukleazės 1 (angl. exoribonuclease 1, XRN1) [18].

9 pav. MiRNR vykdomo genų nutildymo mechanizmai gyvūnų organizmuose. iRNR „G kepurė“ yra vaizduojama kaip juodas taškas; PAM2 – su PABP sąveikaujantis motyvas 2; W – triptofano turintys motyvas; CAF1 – deadenilazė (adaptuota iš Jonas ir kt., 2015) [18]

1.3.3. MiRNR tarpininkaujamo transliacijos slopinimo mechanizmas

MiRNR geba slopinti ir transliaciją, tačiau tikslus molekulinis šio proceso mechanizmas vis dar nėra išaiškinas [81]. Skaičiuojama, kad per šį mechanizmą žinduolių ląstelėse slopinama tik 6-26 proc. endogeninių miRNR taikinių [18]. Kol kas sutariama, kad miRNR inhibuoja transliacijos iniciaciją trikdydama eIF4F komplekso aktyvumą ir/ar formavimąsi (9 pav.) [18,106]. eIF4F kompleksas susideda iš iRNR G kepurę prijungiančio baltymo eIF4E, baltymo adapterio eIF4G ir DEAD dėžutės RNR helikazės eIF4A [18,112]. eIF4G baltymo-baltymo sąveikoje tarnauja kaip matrica, kuri yra labai svarbi 43S pre-iniciacijos komplekso sustiprinimui ir transliacijos iniciacijai [18].
2. TYRIMO METODIKA IR METODAI

Šis baigiamasis magistro darbas yra LSMU MA MF Virškinimo sistemos tyrimų instituto Klinikinės ir molekulinės gastroenterologijos ir Bioinformatikos laboratorijose vykdomos studijos dalis. Ši studija apima du pagrindinius etapus (10 pav.): 1) naujai anotuotų miRNR kandidatų raiškos analizę ir ląstelių linijų parinkimą ir 2) eksperimentinį naujai anotuotų miRNR kandidatų patvirtinimą. Šiame darbe vykdytas antrasis – eksperimentinio patvirtinimo – etapas.

10 pav. Eksperimento etapai ir eiga. A – naujai anotuotų miRNR kandidatų raiškos analizė ir ląstelių linijų parinkimas; B – eksperimentinis naujai anotuotų miRNR kandidatų validavimas

segtuko (angl. *hairpin arm*) sekos, pre-miRNR būdinga antrinė struktūra (9-14 nt ilgio galinė kilpa ir \approx 22 nt ilgio RNR duplikašas). Antrasis etapas apėmė eksperimentinį naujų kandidatų validavimą nuo ląstelių linijų transfekcijos mažosiomis interferuojančiomis RNR (angl. *small interfering/silencing RNAs*, siRNR) iki naujų anotuotų miRNR kandidatų raiškos pokyčių įvertinimo, nutildžius miRNR biogenezės elementus, taikant kTL-PGR metodą.

\[\text{I lentelė. Tyrimui pasirinktų naujai anotuotų miRNR kandidatų sekos ir schematinis jų prekurorsorių vaizdas.} \]

![Schematic diagram of miRNA precursors and new candidates](image)

<table>
<thead>
<tr>
<th>Naujai anotuotas miRNR kandidatas</th>
<th>Naujai anotuoto miRNR kandidato seka (5'→3' kryptimi)</th>
<th>MirDeep2 sugeneruotas naujai anotuoto miRNR kandidato prekurorsorius</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-candidate-8-3p</td>
<td>UGCACGCGACCAUAGAGCC</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-17-3p</td>
<td>UUAUCCUCAGUAGACUAGGA</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-32-3p</td>
<td>UACUCCUCAUUUGAAACUCAGG</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-329-5p</td>
<td>CCAUCUGUGGGAUUAUGACUGA</td>
<td></td>
</tr>
</tbody>
</table>

\[2.1. Tyrimo objektas\]

Tyrimo objektas – naujai anotuotos miRNR ir jų raiškos pokyčiai *in vitro* po pagrindinių miRNR biogenezės elementų nuslopinimo.

\[2.2. Metodai\]

\[2.2.1. Ląstelių kultivavimas\]

Tyrimui naudotos dvi komercinės ląstelių linijos Caco-2 ir HT-29, įsigytos iš Amerikos ląstelių kultūrų kolekcijos (*ATCC, JAV*). Caco-2 (*ATCC® HTB-37™*) (\[11 pav. A\]) ląstelių linija yra išvesta iš 72 metų kaukaziečių tautybės vyro, o HT-29 (*ATCC® HTB-38™*) (\[11 pav. B\]) – iš 44 metų kaukaziečių...
tautybės moters kolorektalinių adenokarcinomų. Šių linijų ластелės yra adhezinės, tačiau turi skirtingus kariotipus, genų, antigenų raišką ir pasižymi skirtingomis morfologinėmis savybėmis.

Caco-2 ir HT-29 ластелės buvo kultivuojamos laikantis ATCC rekomendacijų. >Lastelės buvo kultivuojamos Ham’s F-12K (Kaighn’s) augimo terpėje (Gibco by Life Technologies, JAV), praturtintoje 10 proc. veršiuko embriono serumo (angl. Fetal Bovine Serum, FBS) (Gibco by Life Technologies, JAV) ir 1 proc. penicilino-streptomicino tirpalo (5000 U/ml) (Corning, JAV) (toliau – F-12 augimo terpė). Abiejų linijų ластелės buvo auginamos inkubatoriuje (Eppendorf New Brunswick, JK) drėkinamoje aplinkoje, palaikant 37 °C temperatūrą ir 5 proc. CO₂, jų augimas stebėtas invertuotu optiniu mikroskopu.

Abiejų linijų ластелės buvo auginamos inkubatoriuje (Eppendorf New Brunswick, JK) drėkinamoje aplinkoje, palaikant 37 °C temperatūrą ir 5 proc. CO₂, jų augimas stebėtas invertuotu optiniu mikroskopu.

11 pav. Tyrimo naudotų komercinių ластelių linijų augimo pobūdis, stebint šviesiniu mikroskopu. A – būdingas Caco-2 (ATCC® HTB-37™) ластelių linijos vaizdas, esant mažam (i) ir dideliam (ii) augimo paviršiaus ploto dengimui; B – būdingas HT-29 (ATCC® HTB-38™) ластelių linijos vaizdas, esant mažam (i) ir dideliam (ii) augimo paviršiaus ploto dengimui

LASTELIŲ PERSĖJIMAS BUVO VYKDOMAS, KAI LASTELIŲ KULTIVAVIMO INDO (75 cm²) (Corning, JAV) paviršiaus ploto padengimas siekė bent 70-80 proc. Pirmiausia, iš lastelių kultivavimo indo buvo nusiurbiami augimo terpė, jos likučiai nuo lastelių pašalinami nuplaunant lastelės 20 ml fosfatiniu buferinio druskos tirpalo (angl. phosphate-buffered saline, PBS) (Gibco by Life Technologies, JAV). Po to, siekiant atkelti lastelės nuo kultivavimo indo dugno, ant lastelių užpilti 4 ml 0,25 proc. tripsino-etilendiamintetraacto rūgšties (EDTA) (1x) tirpalo (Gibco by Life Technologies, JAV) ir lastelės inkubuotos 37 °C temperatūroje 5 min, atkibimas vertintas invertuotu optiniu mikroskopu. Lastelėms atkibus nuo kultivavimo indo dugno, 0,25 proc. tripsino-EDTA (1x) tirpalas neutralizuotas, užpilant 16 ml F-12 augimo terpės, lastelių suspensija centrifuguota 5 min 130 x g greičiu. Pašalinus supernatantą, lastelės suspenduotos F-12 augimo terpėje, lastelių suspensijos koncentracija įvertinta naudojant devynių sektorių skaičiavimo kamerų mikroskopijų stiklėlį (Kova International, JAV), lastelės toliau persėtos į naujų lastelių kultivavimo indą tolesniam kultivavimui arba į 12 šulinėlių lastelių kultivavimo plokšteles (600 000 lastelių į šulinėlį) (Corning, JAV) atvirkštinės transfekcijos procedūrai.
2.2.2. Ląstelių transfekcija

Siekiant į ląsteles įvesti egzogenines siRNR, vykdyta atvirkštinio tipo (ląstelės transfekuojamos užsėjimo į kultivavimo indą metu) lipidine pernaša paremta transfekcija, dar vadinama lipotransfekcija. Lipotransfekcija – tai genetinės medžiagos (šiuo atveju – siRNR) pernešimo į ląsteles metodas, kuris remiasi lipidinių kompleksų susidarymu (12 pav. B) [115]. Transfekcijai naudotas Lipofectamine RNAiMAX transfekcijos reagentas (Invitrogen by Life Technologies, JAV). Lipofectamine® transfekcijos reagentai yra specialiai sukurti katijoniniai lipidai, kurių pagrindinės struktūrinės dalys yra teigiamai įkrauta pagrindinė grupė (angl. head group) ir viena arba dvi angliavandenilių grandinės. Įkrauta pagrindinė grupė užtikrina sąveiką tarp lipidų ir nukleorūgštės fosfato grupių. Teigiamai įkrautas liposomų paviršius nulemia nukleorūgštės ir ląstelės membranos sąveiką, leidamas liposomos/nukleorūgštės transfekcijos komplekso susilieti su neigiamai įkrauta ląstelės membrana. Po to transfekcijos kompleksas į ląstelę patenka endocitozės būdu [116].

Ląstelių transfekcija buvo vykdyta naudojant Silencer® Select (Ambion by Life Technologies, JAV) siRNR molekulės. Ląstelės buvo veikiamos: (i) neigiamos kontrolės siRNR (Silencer™ Select Negative Control No. 1 siRNA, toliau – siNC), kuri žmogaus genome neturi jokių komplementarių sekų, (ii) teigiamos kontrolės GAPDH siRNR (Silencer™ Select GAPDH Positive Control siRNA, toliau – siPC:GAPDH), ir (iii) DGCR8, RNASEN, DICER1 ir EIF2C2 siRNR genų, koduojančių pagrindinius miRNR biogenezės elementus (DGCR8, Drosha, Dicer ir AGO2) (2 lentelė) (toliau – siDGCR8, siRNASEN, siDICER1, siEIF2C2), atitinkamai.
12 pav. A – siRNR genų-taikinių nutildymo mechanizmas; B – lipotransfekcijos veikimo schema. 1 – ląstelės fosfolipidinis dvisluoksnis, sudarytas iš vidinio hidrofobinio ir išorinio hidrofilinio sluošnų; 2 – liposoma, sudaryta iš lipidinio dvisluoksnio, išsidėsčiusio sferinio apvalkalo paviršiuje; 3 – liposomų susiformavimas aplink genetinę medžiagą; 4 – liposomų patekimas į ląstelę endocitozės būdu; 5 – liposomų susiliejimas su ląstelės plazmini membrana (adaptuota iš Dana ir kt., 2017; Carter ir Shieh, 2015) [114,115]

Pasirinkta naudoti 100 nM galutinę kiekvienos siRNR koncentraciją šulinėlyje (siPC:GAPDH, siDGCR8, siRNASEN, siDICER1, siEIF2C2 – po 100 nM) ir ląstelės po transfekcijos siRNR molekulėmis inkubuoti 48 h. Teigiamos kontrolės siPC:GAPDH molekulės į ląstelės įvestos, siekiant vertinti transfekcijos efektyvumą tarp eksperimentų.
2 lentelė. Tyrime naudotų siRNR molekulių, nukreiptų prieš pagrindinius miRNR biogenezės elementų genus, sekos (Ambion by Life Technologies, JAV)

<table>
<thead>
<tr>
<th>Seka (5’→3’)</th>
<th>Prasminė (angl. sense)</th>
<th>Antiprasminė (angl. antisense)</th>
<th>Geno- taikinio pavadinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAGCAUACUUAAUCGCCUtt</td>
<td>AAGGCGAUAAGAUGCUUgg</td>
<td>\textit{DICER1}</td>
<td></td>
</tr>
<tr>
<td>GACCACACUUUGUACCUAtt</td>
<td>AAGGGUACAAAGUCUGGUCgt</td>
<td>\textit{RNASEN}</td>
<td></td>
</tr>
<tr>
<td>GGAUCAUGACAUUCUCCUAtt</td>
<td>UUAUGGAUGUCAUGUCCac</td>
<td>\textit{DGCR8}</td>
<td></td>
</tr>
<tr>
<td>CAUUAUGAAUUGGAUCAUCAtt</td>
<td>UGAUAUCCAAUUCAUAGat</td>
<td>\textit{EIF2C2}</td>
<td></td>
</tr>
</tbody>
</table>

Vykdant transfekciją, buvo naudojama Opti-MEM terpė, (\textit{Gibco by Life Technologies, JAV}), padedanti išlaikyti ląstelės nepakitusias ir gyvybingas. Ši terpė naudota ruošiant Lipofectamine RNAiMAX transfekcijos reagento ir siRNR – i. \textit{siNC}, ii. \textit{siPC:GAPDH} ir iii. \textit{siDGCR8, siRNASEN, siDICER1, siEIF2C2} – mišinius. \textit{Lipofectamine RNAiMAX} sumaišytas su kiekvieniu iš trijų siRNR mišinių santykiu 1:1 ir inkubuotas 5 min. kambario temperatūroje, kad susidarytų transfekcijos kompleksai (susilietų liposomos ir siRNR). Kiekvieno nepriklausomo eksperimento metu ląstelių transfekcija vykdyta dupletais: į du šulinėlius įnešta transfekcijos mišinio su \textit{siNC}, į kitus du – su \textit{siPC:GAPDH}, į dar du – su \textit{siDGCR8, siRNASEN, siDICER1, siEIF2C2}. Į kiekvieną šulinėlį su transfekcijos reagentais užsėta po 600 000 Caco-2 arba HT-29 linijų ląstelių, paruoštų F-12 augimo terpėje, praturtintų 5 proc. FBS ir neturinčio antibiotikų. Ląstelės su transfekcijos reagentais buvo inkubuojamos 24 h. Po to terpė su transfekcijos reagentais pašalinta, ląstelės praplautos PBS ir ant jų užpilta šviežios F-12 augimo terpės be antibiotikų. Ląstelės paliktos inkubuotis dar 24 h iki visuminės ląstelių RNR gryninimo tolimesniems tyrimo etapams.

2.2.3. Visuminės ląstelių RNR išskyrimas

Visuminė ląstelių RNR gryninta, naudojant \textit{miRNeasy Mini Kit} (Qiagen, Vokietija) rinkinį, laikantis gamintojo rekomendacijų. Šis rinkinys įgalina visuminės RNR, įskaitant miRNR ir kitų mažų RNR molekulių, išskyrimą iš ląstelių kultūrų ir žuvų gryvūnų ir žmogaus audinių, o jo veikimo principas remiasi fenoliu/guanidinu paremta mėginių lize ir tolesniu visuminės RNR išgryninimu silikagelio kolonėlėmis (13 pav.). Rinkinyje esantis \textit{QIAzol} lizės reagentas yra monofazinis fenolio ir guanidino tiocianato tirpalas, kuris organinio gryninimo metu palengvina ląstelių lizę, inhibuoja RNazes ir iš lizatų pašalina didžiąjā dalį ląstelių DNR ir baltymų.

Ląstelių mėgainai purtykle buvo homogenizuojami 700 μl \textit{QIAzol} lizės reagento, po to į lizatą pridėta 140 μl chloroformo (\textit{Sigma-Aldrich, JAV}), centrifuguota 12 000 x g greičiu 4 °C temperatūroje ir

13 pav. Principinė visuminės RNR gryninimo schema, naudojant miRNeasy Mini Kit rinkinį (adaptuota iš Qiagen, 2014) [117]

RNR koncentracija nustatyta Qubit® 4 fluorimetru (Invitrogen by Life Technologies, JAV), panaudojant Qubit® RNA Broad-Range (BR) Assay Kit (Invitrogen by Life Technologies, JAV) rinkinį. Šio rinkinio sudėtyje yra Qubit® BR RNR koncentruotas reagentas su fluorescenciniu dažu, Qubit® BR RNR skiedimo buferis ir du žinomos koncentracijos RNR standartai. Qubit® BR RNR koncentruotas reagentas buvo atskiestas buferyje santykio 1:200. Matavimui naudota po 1 µl RNR mėginio, o fluorimetro kalibracijai – po 10 µl abiejų standartų. Visi mėginiai buvo inkubuojami 2 min., per kurias reagente esantis fluorescencinis dažas atrankiai prisijungia prie RNR. Nustatytos mėginių santykinio fluorescencijos vienetių reikšmės buvo konvertuotos į koncentracijas (ng/µl), panaudojant kalibracinių kreivę, nubrėžtą panaudojant du žinomos koncentracijos RNR standartus.
2.2.4. Kopijinēs DNR sintezē, panaudojant atsitiktinus pradmenis

Po visuminēs RNR išskyrimo vykdyta atvirkštinės transkripcijos (AT) reakcija, naudojant High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, JAV) rinkinį, siekiant iš turimos RNR susintetinti pirmąją (angl. first-strand) kopijinēs DNR grandinę (kDNR) siRNR genų-taikinių raiškos analizei. kDNR buvo sintetinama remiantis gamintojo rekomendacijomis. 2× reakcijos mišinys paruoštas iš 10× AT buferio, 25× deoksinukleozido 5′ trifosfatų (dNTP) mišinio (100 mM), 10× AT atsitiktinių pradmenų (angl. random primers) mišinio (14 pav.), MultiScribe atvirkštinės transkriptazės (50 U/µL), RNazių inhibitoriaus (20 U/µL) ir vandens be nukleazių. Į mėgintuvėlius išpilstyta po 5 µl 2× AT reakcijos mišinio ir pridėta po 5 µl (100 ng/µl koncentracijos) RNR mėginio, taip užtikrinant 1× galutinę reakcijos mišinio koncentraciją.

14 pav. kDNR sintezėje naudojamų atsitiktinių pradmenų veikimo principas. 6-9 bazių ilgio atsitiktiniai pradmenys komplementariai prisijungia (angl. anneal) prie dauginių RNR transkripto sekų per visą iRNR ilgį ir taip užtikrina pirmosios kDNR grandinės sintezę, vykdomą atvirkštinės transkriptazės (vaizduojama kaip pilki apskritimai) (adaptuota iš Thermo Fisher Scientific) [118]

2.2.5. Kopijinēs DNR sintezē, panaudojant miRNR specifinius pradmenis

3 lentelė. kTL-PGR metodu tirtų mažųjų RNR TaqMan Small RNA Assays kodai (ID) (Applied Biosystems, JAV), kategorija ir jų apibūdinimas

<table>
<thead>
<tr>
<th>Mažoji RNR</th>
<th>ID</th>
<th>Kategorija</th>
<th>Apibūdinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNU48</td>
<td>001006</td>
<td>TaqMan MicroRNA Assay</td>
<td>Mažoji branduolėlių RNR, naudojama kaip referentinė RNR duomenų normalizavimui</td>
</tr>
<tr>
<td>Hsa-miR-16-5p</td>
<td>000391</td>
<td>TaqMan MicroRNA Assay</td>
<td>Kanoninės miRNR</td>
</tr>
<tr>
<td>Hsa-miR-324-5p</td>
<td>001136</td>
<td>TaqMan MicroRNA Assay</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-8-3p</td>
<td>-</td>
<td>Custom TaqMan Small RNA Assay</td>
<td>Tiriamieji naujai anotuoti miRNR kandidatai</td>
</tr>
<tr>
<td>miR-candidate-17-3p</td>
<td>-</td>
<td>Custom TaqMan Small RNA Assay</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-32-3p</td>
<td>-</td>
<td>Custom TaqMan Small RNA Assay</td>
<td></td>
</tr>
<tr>
<td>miR-candidate-329-5p</td>
<td>-</td>
<td>Custom TaqMan Small RNA Assay</td>
<td></td>
</tr>
</tbody>
</table>

Kiekvienas *TaqMan MicroRNA* arba *Custom TaqMan Small RNA* reagentų rinkinyje yra iš anksto susintetintų pradmenų ir zondų komplektas, leidžiančio aptikti ir kiekybiškai įvertinti subrendusias miRNR. AT naudojami pradmenys turi stiebo-kilpos (angl. stem-loop) struktūrą ir jungiasi prie 3' miRNR galo. Be to, dvigrandis pradmenų stiebas neleidžia jiems hibridizuotis su pre-miRNR ir kitomis ilgomis RNR molekulėmis, o išsivyniojusi stiebo-kilpos struktūra prie AT produkto dar prideda papildomą seką – taip suformuojamas šablonas (angl. *template*) kTL-PGR (15 pav.) [119].

![15 pav. MiRNR kDNR sintezės principas](adaptuota_iš_Applied_Biosystems_120)

Kanoninių miRNR (hsa-miR-16-5p ir hsa-miR-324-5p) kDNR sintezei buvo naudojami 4 ng/µl koncentracijos visuminės RNR mėginiai, o naujai anotuotų miRNR kandidatų (miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p, miR-candidate-329-5p) kDNR sintezei – 100 ng/µl. AT reakcijos mišinys paruoštas iš dNTP mišinio (100 mM), *MultiScribe* atvirkštinės transkriptazės (50 U/µl), 10× AT buferio, RNazių inhibitoriaus (20 U/µl) ir vandens be nukleazių. Į kiekvieną mėgintuvėlį įnešta 3,5 µl AT
reakcijos mišinio, 1,5 µl 5× miRNR specifinio AT pradmens ir 2,5 µl RNR mėgino. Mégintuveliai 5 min. inkubuoti ant ledo. kDNR sintezė vykdyta Veriti 96 well Thermal Cycler (Applied Biosystems, JAV) termocikleryje pagal programą: 16 °C – 30 min., 42 °C – 30 min., 85 °C – 5 min. AT reakcijos produktai iš karto naudoti kTL-PGR arba laikyti -20 °C temperatūroje.

2.2.6. Genų ir miRNR raiškos pokyčių nustatymas kiekybinės tikrojo laiko polimerazės grandininės reakcijos metodu

4 lentelė. kTL-PGR metodu tirto genų TaqMan Gene Expression Assay kodai (ID) (Applied Biosystems, JAV) ir jų apibūdinimas

<table>
<thead>
<tr>
<th>Genas</th>
<th>ID</th>
<th>Apibūdinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>Hs99999903_m1</td>
<td>Referentinis genas, naudojamas duomenų normalizavimui</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Hs99999905_m1</td>
<td>siPC:GAPDH genas-taikinys, naudojamas transfekcijos sąlygų optimizavimui</td>
</tr>
<tr>
<td>DGCR8</td>
<td>Hs00377897_m1</td>
<td>siDGCR8 genas-taikinys</td>
</tr>
<tr>
<td>DROSHA</td>
<td>Hs00203008_m1</td>
<td>siRNASEN genas-taikinys</td>
</tr>
<tr>
<td>DICER1</td>
<td>Hs00229023_m1</td>
<td>siDICER1 genas-taikinys</td>
</tr>
<tr>
<td>AGO2</td>
<td>Hs01085579_m1</td>
<td>siEIF2C2 genas-taikinys</td>
</tr>
</tbody>
</table>

zondas yra komplementarus taikininkai sekai ir jei taikininkė seka yra amplifikuojama PGR metu. Tokios sąlygos užtikrina, kad nespecifinė amplifikacija nebūtų registruojama. Grandinės polimerizacija tęsiasi, tačiau kadangi zondo 3' galas yra užblokuotas, zondo prailginimas PGR metu nevyksta.

16 pav. kTL-PGR veikimo principas, naudojant TaqMan Gene Expression Assays, Custom TaqMan Small RNA Assays ir TaqMan MicroRNA Assays reagentų rinkinius. A – Pradmenų ir zondų prisijungimas prie kDNR grandinių; B – Pradinė polimerizacija ir reporterinio dažo nuskėlimas; C – Polimerizacijos užbaigimas (adaptuota iš Applied Biosystems) [120]

5 lentelė. kTL-PGR terminio ciklinimo programa, naudojant TaqMan Universal Master Mix II, with UNG (Applied Biosystems, JAV) reakcijos mišinių

<table>
<thead>
<tr>
<th>Etapas</th>
<th>Temperatūra</th>
<th>Laikas</th>
<th>Ciklai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uracil-N-glikozilazės (UNG) aktyvacija</td>
<td>50 °C</td>
<td>2 min.</td>
<td>1</td>
</tr>
<tr>
<td>DNR polimerazės aktyvacija</td>
<td>95 °C</td>
<td>10 min.</td>
<td>1</td>
</tr>
<tr>
<td>Denatūracija</td>
<td>95 °C</td>
<td>15 sek.</td>
<td>40</td>
</tr>
<tr>
<td>Pradmenų prisijungimas, grandinės pagausinimas</td>
<td>60 °C</td>
<td>60 sek.</td>
<td></td>
</tr>
</tbody>
</table>
kTL-PGR metu pagausintas produktas nustatytas pagal *TaqMan* reagentų rinkiniuose esančių fluorochromų fluorescencijos lygį, registruojant kiekvieno mėginio slenkstinių ciklo (angl. *cycle of threshold*, *C*_\text{T}) vertes. Santykiniai genų, kanoninių ir naujai anotuotų miNR kandidatų raiškos pokyčiai įvertinti 2\^{\Delta\Delta C_T} metodu [121] pagal 1 formulę:

$$n = 2^{\Delta\Delta C_T},$$

kur \Delta\Delta C_T = (C_{T(K)} - C_{T(P)})_{referentinio geno arba mažosios RNR} - (C_{T(K)} - C_{T(P)})_{tiriamojo geno arba mažosios RNR}, n - genų/miNR raiškos pokytis kartais, C_{T(K)} - kontrolinio mėginio slenkstinių ciklo vertė, C_{T(P)} - tiriamojo poveikio mėginio slenkstinių ciklo vertė.

2.2.7. Statistinė analizė

Su kiekviena ląstelių linija atlikta po 6 nepriklausomus eksperimentus. Statistinė rezultatų analizė atlikta naudojant *R studio* (*R* versija 3.5.3) programiu paketas. Skirtumai tarp grupių laikyti statistiškai reikšmingais, kai apskaičiavota p reikšmė buvo lygi arba mažesnė už kritinį lygmenį (p ≤ 0,05). Duomenų pasiskirstymas grupėse pagal normalųjį (Gauso) skirstinį vertintas pagal Shapiro-Wilk normalumo testą, skirtumai tarp grupių vertinti, taikant Student's *T* testą arba Mann-Whitney *U* testą. Student's *T* testas buvo naudojamas analizuojant skirtumus tarp grupių, kuriose duomenys pasiskirstė pagal Normalųjį skirstinį. Mann-Whithey *U* testas buvo naudojamas analizuojant skirtumus tarp grupių, kuriose duomenys pasiskirstė ne pagal Normalųjį skirstinį.
3. REZULTATAI

3.1. Eksperimentinis siRNR genų-taikinių raiškos įvertinimas

3.1.1. Teigiamos kontrolės siRNR geno-taikinio raiškos pokyčiai

Po ląstelių transfekcijos teigiamos kontrolės siRNR (siPC:GAPDH), GAPDH geno raiška po 48 h reikšmingai sumažėjo 2,50 karto Caco-2 ląstelių linijoje (p = 0,016) ir 3,02 karto HT-29 ląstelių linijoje (p = 0,049), lyginant su ląstelėmis, veiktomis siNC (17 pav.). Šie rezultatai leido įvertinti, kad transfekcijos efektyvumas tarp eksperimentų buvo panašus.

![GAPDH geno raiškos pokyčiai](image)

17 pav. SiPC:GAPDH geno-taikinio GAPDH santykiniai raiškos pokyčiai praėjus 48 h po transfekcijos Caco-2 ir HT-29 ląstelių linijose, lyginant ląstelės, veiktas teigiamos kontrolės siRNR ir neigiamos kontrolės siRNR. Normalizuotos ΔCptide vertės pateikiamos logaritimėje skalėje. Žvaigždutės (*) – statistiškai reikšmingi skirtumai (p < 0,05).

3.1.2. SiRNR genų-taikinių raiškos pokyčiai

Genų raiškos tyrimo metu buvo analizuoti keturi genai, kurie yra transfekcijoje naudotų siRNR molekulių genai-taikiniai: DGCR8 – siDGCR8 genas-taikinis, DROSHA – siRNASEN genas taikinys, DICER1 – siDICER1 genas taikinys, AGO2 – siEIF2C2 genas taikinys.
Tiriant genų-taikinių raišką Caco-2 ir HT-29 ląstelių linijose po poveikio siRNR, nukreiptomis prieš pagrindinius miRN biogenezės elementus, kTL-PGR rezultatai parodė, kad lyginant su neigiamos kontrolės siRNR transfekuotomis ląstelėmis reikšmingai sumažėjo AGO2, DICER1, DROSHA raiška. Po poveikio siRNR abiejose ląstelių linijose DGCR8 geno raiška neįtikėtinai nepakito (raiškos pokytis kartais: Caco-2 ląstelių linijoje – 1,02 (p = 0,569), HT-29 ląstelių linijoje – 0,850 (p = 0,180)) (18 pav., 19 pav.).

Nustatyta, kad abiejose tirtose ląstelių linijose labiausiai nuslopinta DICER1 geno raiška, kuri Caco-2 ląstelių linijoje reikšmingai sumažėjo 2,68 karto (p = 5,62 × 10⁻⁷), o HT-29 ląstelių linijoje – 2,34 karto (p = 1,102 × 10⁻⁶). SiRNASEN turėjo šiek tiek mažesnį poveikį DROSHA geno raiškai, kuri Caco-2 ląstelių linijoje reikšmingai sumažėjo 1,35 karto (p = 1,252 × 10⁻³), o HT-29 ląstelių linijoje – 2,03 karto (p = 4,883×10⁻⁴). Tuo tarpu AGO2 geno raiška Caco-2 ląstelių linijoje reikšmingai sumažėjo 1,45 karto (p = 4,883 × 10⁻⁴), o HT-29 ląstelių linijoje – 1,49 karto (p = 7,967 × 10⁻⁷).
19 pav. SiRNR genų-taikinių santykiniai raškios pokyčiai praėjus 48 h po transfekcijos HT-29 ląstelių linijoje, lyginant ląsteles, veiktas siRNR ir neigiamos kontrolės siRNR. Normalizuotos ΔC_T (dCt) vertės pateikiamos logaritminėje skalėje. Žvaigždutės (*) – statistiškai reikšmingi skirtumai (p < 0,05), taškai (•) – reikšmės, reikšmingai besiskiriančios nuo kitų grupės reikšmių (angl. outliers).

Įvertinus, kad ir Caco-2, ir HT-29 ląstelių linijose sėkmingai nuslopinta beveik visų pagrindinius miRNR biogenezės elementus koduojančių genų raška, toliau buvo tiriama, kaip tokie pokyčiai paveikė kanoninių miRNR ir naujai anotuotų miRNR kandidatų rašką in vitro.

3.2. Eksperimentinis kanoninių miRNR raškos įvertinimas

Siekiant eksperimentiškai įvertinti kanoninių miRNR biogenezės kelių bręstančių miRNR raškos pokyčius po pagrindinių miRNR biogenezės elementų genų nuslopinimo, pasirinktos dvi kanoninės miRNR – hsa-miR-16-5p ir hsa-miR-324-5p. Šios miRNR eksperimentuose tirtos todėl, kad žinoma, jog jos yra ekspresuojamos tyrimo naudotose Caco-2 ir HT-29 kolorektalinės adenokarcinomos ląstelių linijose.

Tyrimo rezultatai parodė, kad pagrindinių miRNR biogenezės elementų genų raškos nuslopinimas skirtingose ląstelių linijose padaė nevienodą įtaką kanoninių hsa-miR-16-5p ir hsa-miR-324-5p raškai. Nors ląstelių linijose nustatyti reikšmingi raškos skirtumai buvo labai panašūs, tačiau ne
visais atvejais siRNR poveikis sąlygojo abiejų kanoninių miRNR raiškos sumažėjimą, lyginant su neigiamos kontrolės siRNR transfekuotomis lotelėmis.

Nustatyta, kad Caco-2 ląstelių linijoje dėl siRNR poveikio abiejų tirtų kanoninių miRNR raiška reikšmingai sumažėjo: hsa-miR-16-5p – 1,32 karto (p = 6,836 × 10⁻³), hsa-miR-324-5p – 1,34 karto (p = 1,253 × 10⁻³) (20 pav.).

Tuo tarpu tyrimo rezultatai HT-29 ląstelių linijoje atskleidė, kad siRNR poveikio sąlygojo tik vienos kanoninės miRNR reikšmingą raiškos sumažėjimą, lyginant su neigiamos kontrolės siRNR transfekuotomis lotelėmis. Nustatyta, kad hsa-miR-324-5p raiška sumažėjo 1,30 karto (p = 4,883 × 10⁻³), tačiau hsa-miR-16-5p raiška reikšmingai nepakito (raiškos pokyties karta – 1,01, p = 0,850) (21 pav.).

Nustačius, kad abiejose tirtose kolorektalinės adenokarcinomos ąstelių linijose sumažėjo bent vienos kanoninių kelių bręstančios miRNR raiška, įvertinta, kad kanoninis miRNR biogenezės mechanizmas yra sutrikdytas, t.y. siRNR molekulėmis paveiktos ąstelės nebe susinteti tiek pat subrendusių miRNR molekulų kaip nepaveiktos. Toliau tirti keturių pasirinktų naujai anotuotų miRNR kandidatų raiškos pokyčiai in vitro.
21 pav. Hsa-miR-16-5p ir hsa-miR-324-5p santykiniai raiškos pokyčiai praėjus 48 h po transfekcijos HT-29 ląstelių linijoje, lyginant ląsteles, veiktas siRNR ir neigiamos kontrolės siRNR. Normalizuotos ΔCT (dCt) vertės pateikiamos logaritminėje skalėje. Žvaigždutės (*) – statistiškai reikšmingi skirtumai (p < 0,05), taškai (•) – reikšmės, reikšmingai besiskiriančios nuo kitų grupės reikšmių (angl. outliers).

3.3. Eksperimentinis naujai anotuotų miRNR kandidatų raiškos įvertinimas

Eksperimentiniam kandidatų raiškos įvertinimui buvo pasirinktos keturios naujai anotuotos miRNR – miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p, miR-candidate-329-5p. MiR-candidate-32-3p nebuvo įtrauktas į tolimesnę analizę, kadangi jo raiška kTL-PGR metodu nebuvo nustatyta nei vienoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29).

Tyrimo rezultatai Caco-2 ląstelių linijoje parodė, kad nei vieno iš trijų naujų anotuotų miRNR kandidatų (miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-329-5p) raiška po poveikio siRNR molekulėms reikšmingai nepasikeitė (raiškos pokytis kartais atitinkamai 0,95 (p = 0,677), 1,03 (p = 0,791), 1,07 (p = 0,469)) (22 pav.).

HT-29 ląstelių linijoje gauti rezultatai buvo panašūs (23 pav.) – reikšmingų miR-candidate-17-3p ir miR-candidate-329-5p raiškos pokyčių, lyginant su neigiamos kontrolės siRNR transfekuotomis ląstelėmis, taip pat nenustatyta (raiškos pokytis kartais atitinkamai 1,04 (p = 0,850) ir 1,11 (p = 0,310)).
Tuo tarpu miR-candidate-8-3p raiška sumažėjo 1,2 kartas, lyginant su neigiamos kontrolės siRNR transfekuotomis ląstelėmis, tačiau skirtumas nebuvo statistiškai reikšmingas \(p = 0,054 \).

22 pav. MiR-candidate-17-3p, miR-candidate-329-5p, miR-candidate-8-3p santykiniai raiškos pokyčiai praėjus 48 h po transfekcijos Caco-2 ląstelių linijoje, lyginant ląsteles, veiktas siRNR ir neigiamos kontrolės siRNR. Normalizuotos \(\Delta CT \) (dCt) vertės pateikiamos logaritinėje skalėje.

23 pav. MiR-candidate-17-3p, miR-candidate-329-5p, miR-candidate-8-3p santykiniai raiškos pokyčiai praėjus 48 h po transfekcijos HT-29 ląstelių linijoje, lyginant ląsteles, veiktas siRNR ir neigiamos kontrolės siRNR. Normalizuotos \(\Delta C_T \) (dCt) vertės pateikiamos logaritinėje skalėje. Taškai (*) – reikšmės, reikšmingai besiskiriančios nuo kitų grupės reikšmių (angl. outliers).
4. REZULTATŲ APTARIMAS

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.

Pirmiausia, po poveikio siRNR molekulėmis nustatyta, kad DROSHA, DICER1, AGO2 genų raiška sumažėjo (26-74 proc.), o tuo tarpu DGCR8 geno raiška nei vienoje tirtoje kolorektalinės adenokarcinomos ląstelių linijoje (Caco-2 ir HT-29) reikšmingai nepakito, lyginant su neigiamu kontrolės rezultatu. Panašų genų nutildymo efektyvumą (31-67 proc.) pavyko pasiekti ir Friedländer su bendraautoriais [122], tyrinėjant naujai anotuotų miRNR kandidatų biogenezę. Šio tyrimo metu nustatytas DGCR8 genų raiška sumažėjimas (26-74 proc.) ir tai yra pirmoji studija, siekianti patikrinti miRNR biogenezės sutrikdymo poveikį šiuo kolektyvu molekulių raiškai in vitro.
sumažėjo ir tik mažos dalies nekanoninėms miRNR priskiriamų miRNR (mirtrono miR-877-5p ir 5’ gale G kepūrė turinčių miR-320a-3p, miR-320b-3p, miR-484-3p) raiška nepakito. Toje pačioje studijoje taip pat nustatyta, kad DICER geno neturinčiose ląstelėse beveik visų tirtų miRNR raiška buvo stipriausia sumažėjusi, be to, autoriai pastebėjo, kad šiose nokiautišėse ląstelėse žymiai labiau sumažėjo 3p miRNR raiška, lyginant su 5p miRNR. Guo ir bendraautorių [4] studija analizavo DGCR8 geno neturinčias kamienines ląstelės ir taip pat konstatavo, kad daugumos miRNR, išskyrus mirtronus, biogenezė yra priklausoma nuo šio mikroprocesoriaus komplekso komponento. Šio baigiamojo magistro darbo metu gautos kanoninių miRNR raiškos sumažėjimo vertės nėra labai didelės, nes buvo naudojamos siRNR, kurios sąlygoja trumpalaikį ir dalinį geno-taikinio raiškos nuslopinimą, kai tuo tarpu kitose studijose naudojamos genų išmušimo (angl. knockout) technologijos leidžia pašalinti geną ar jo fragmentą, todėl tokie manipuliacijų padariniai būna žymiai ryškesni [124].

Galiausiai, šiame darbe įvertinti keturių pasirinktų naujų miRNR kandidatų raiškos pokyčiai in vitro po pagrindinių miRNR biogenezės elementų nuslopinimo, tačiau nei vieno tirto kandidato reikšmingų raiškos pokyčių iRNR lygmenyje nenukentėti. Mokslininkų grupės intensyviai tyrinėja naujas miRNR ir skirtingų grupių skelbiamai rezultatai rodo, kad ne visi bioinformatiniai įrankiai anotuoti miRNR kandidatių raiškas yra tikrosios miRNR, o validuotos naujos miRNR dažnai yra ekspresuojamos tik specifiniose audiniuose ar tam tikroje vystymosi stadijoje. Viena didžiausių naujų miRNR kandidatų studijų, kurią atliko Friedländer su bendraautoriais [122], identifikavo 2469 naujų miRNR kandidatų, iš kurių, remiantis biogeneze, validuoti 1098. Vienoje studijos dalyje ši mokslininkų grupė nustatė, kad neuroblastos ląstelių linijoje SH-SY5Y siRNR molekulėmis nutildžius tuos pačius miRNR biogenezės elementus kaip ir šio baigiamojo magistro darbo metu, šioje linijoje 295 naujų anotuotų miRNR kandidatų raiškas sumažėjo 18-35 proc. Li ir bendraautoriai [125] studijoje pelių neuroblastos ląstelės N2a paveikus siDICER, naujų anotuotų miRNR kandidatų raiškas sumažėjo 55 proc. Reshmi su bendraautoriais [126] tyrinėjo gimos kaglelio trapiose srityse (angl. fragile site) naujų anotuotų miRNR kandidatų raiškas sumažėjo 55 proc. Londin ir bendraautoriai [5] analizavo subrendusiu siRNR molekulėmis MCF7 ląstelių linijoje, po kurio nustatyta, kad 278 šioje ląstelių linijoje ekspresuojamų naujų miRNR kandidatų raiškas sumažėjo 1,6 karto. Londin mokslininkų grupė kTL-PGR
metodu taip pat nustatė, kad 20 skirtingų pasirinktų miRNR kandidatų yra amplifikuojami tiek specifiskai viename, tiek įvairiuose audiniuose.

Šio darbo metu nebuvo įvertinta EXP5 nutildymo įtaka miRNR biogenezei. Tačiau kitų mokslininkų atlikti tyrimai parodė, kad nesant EXP5 łąstelėse pre-miRNR pernešimas į citoplazmą vis tiek vyksta [35], nes egzistuoja alternatyvus, Eksportino 1 (EXP1) vykdomas, pernešimas [127–129]. Taip pat neįvertinome pagrindinių biogenezės elementų pokyčio baltymų lygyje po nutildymo siRNR molekulėmis. Remiantis Liu [130] ir Li [131] su bendraautoriais atliktomis studijomis nustatyta, kad raiškos pokyči Brooks baltymų lygmenyje ir fenotipinės tokio nutildymo pasireiškimas buvo mažesnis.

Apibendrinant, atliktas tyrimas yra pirmasis, analizavęs keturių naujai anotuotų miRNR – miR-candidate-8-3p, miR-candidate-17-3p, miR-candidate-32-3p ir miR-candidate-329-5p – raiškos pokyčius po kanoninės miRNR biogenezės elementų nuslopinimo. SiRNR poveikis lėmė DROSHA, DICER1 ir AGO2 genų bei kanoninių miRNR hsa-miR-16-5p ir hsa-miR-324-5p raiškos sumažėjimą, tačiau miRNR kandidatų miR-candidate-8-3p, miR-candidate-17-3p ir miR-candidate-329-5p raiškai įtakos neturėjo. nors miRNR kandidatų raiškos pokyčių nenustatyta, tačiau jie buvo sėkmingai amplifikuoti Caco-2 ir HT-29 ląstelių linijose. Tai patvirtina, kad šie kandidatai nėra sekoskaitos metu nuskaityti atsitiktiniai transkriptų fragmentai ar kiti artefaktais, nors ir bręsta kitų, galimai ne kanoniniu, keliu. Rezultatai atskleidė, kad naujai anotuotų miRNR raiška kolorektalinės adenokarcinomos ląstelių linijose (Caco-2 ir HT-29) yra žymiai mažesnė nei kanoninių miRNR raiška. Tačiau negalima atmesti tikimybės, kad tam tikruose ląstelių tipuose šių miRNR kandidatų raiška yra didesnė ir jie atlieka svarbų biologinį vaidmenį. Siekiant patvirtinti gautus rezultatus, būtų prasminga atlikti mažųjų RNR sekoskaitą, o nustačius naujų miRNR kandidatų raiškos skirtumus – patvirtinti jų biologinę funkciją.
IŠVADOS

1. Po pagrindinių mikroRNR biogenezės elementų genų nutildymo Caco-2 ir HT-29 ląstelių linijose *DROSHA*, *DICER1* ir *AGO2* genų raiška reikšmingai sumažėjo, *DGCR8* raiška nepakito.

2. Nuslopinus pagrindinius kanoninės mikroRNR biogenezės elementų genus, hsa-miR-324-5p raiška reikšmingai sumažėjo Caco-2 ir HT-29 ląstelių linijose, hsa-miR-16-5p – Caco-2 ląstelių linijoje.

3. Pagrindinių mikroRNR biogenezės elementų genų nuslopinimas naujai anotuotų mikroRNR kandidatų miR-candidate-8-3p, miR-candidate-17-3p ir miR-candidate-329-5p raiškai įtakos neturėjo.
PRAKTINĖS REKOMENDACIJOS

Siekiant patvirtinti nustatytus kanoninių miRNR raiškos pokyčius ir patiksinti naujai anotuotų miRNR kandiatų raiškos pokyčius po pagrindinių kanoninės miRNR biogenezės elementų nuslopinimo, būtų tikslinga kTL-PGR metodu tirtiems mėginiams atlikti mažųjų RNR sekoskaitą. Mažųjų RNR sekoskaitos duomenų analizė leistų įvertinti ir kTL-PGR metu neaptikto miR-candidate-32-2p kandidato, ir likusių, šiame darbe netyrinėtų, kandidatų raišką in vitro eksperimentinėmis sąlygomis.

11. Hackenberg M, Sturm M, Langenberger D, Falcón-Pérez JM, Aransay AM. miRanalyzer: a

31. X C, CH H, BR C. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna. 2004 m.;10:1957.

