SIMONA KAMANDULYTĖ

POLIFENOLINIŲ RŪGŠČIŲ ĮVERTINIMAS RYKŠTENĖS
(SOLIDAGO L.) AUGALINĖJE ŽALIAVOJE

Magistro baigiamasis darbas

Darbo vadovė:
Doc. dr. R. Marksienė

Kaunas 2014
POLIFENOLINIŲ RŪGŠČIŲ ĮVERTINIMAS RYKŠTENĖS
(SOLIDAGO L.) AUGALINĖJE ŽALIAVOJE
Magistro baigiamasis darbas

Recenzentė
Dr. Rimgailė Degutytė

Darbo vadovė
Rūta Marksienė

Darbą aliko
Magistrantė
Simona Kamandulytė

KAUNAS, 2014
3.2. Efektyviosios skysčių chromatografijos metodikos optimizavimas... 27
3.3. Metodikos validacija... 27
 3.3.1. Specifiškumas ... 27
 3.3.2. Rezultatų glaudumas ... 30
 3.3.3. Metodo aptikimo ir nustatymo ribos .. 32
 3.3.4. Tiesiškumas.. 32
3.4. Junginių identifikavimas.. 33
3.5. Fenolinų rūgščių kiekybinis nustatymas ... 34
IŠVADOS.. 38
LITERATŪROS SĄRAŠAS.. 39
SANTRUMPOS

ESC – efektyvioji skysčių chromatografija
KE – kapiliarinė elektroforezė
KEC – kapiliarų elektro chromatografija
KZE – kapiliarinė zonų elektroforezė
LOD – aptikimo riba
LOQ – nustatymo riba
MEKC – micelinė elektrokinetinė chromatografija
MS – masių spektrometrija
R² – koreliacijos koeficientas
SSN – santykinis standartinis nuokrypis
TFA – trifluoracto rūgštis
UV – ultravioletinė šviesa
SANTRAUKA

S. Kamandulytės magistro baigiamasis darbas „Polifenolinių rūgščių įvertinimas rykštenės (Solidago L.) augalinėje žaliavoje“ / mokslinė vadovė doc. dr. R. Marksienė; Lietuvos sveikatos mokslų universiteto, Medicinos akademijos, Farmacijos fakulteto, Analizinės ir toksikologijos chemijos katedra. – Kaunas.

Raktiniai žodžiai: rykštenė, efektyvioji skysčių chromatografija, polifenolinės rūgštys.

Rykštenė yra daugiametis augalas, priklausantis astrinių šeimai. Ji pasižymi keliiais farmakologiniais veikimais, tokiais kaip skatinančiu diurezę, priešuždegiminiu, analgetiniu, antispazmolitiniu, antibakteriniu ir antigrybeliniu, taip pat antioksidaciniu ir priešvėžiniu aktyvumu.

Iš rykštenės žaliavos gaminami vaistai skatinantys diurezę. Ji taip pat jeina į Lietuvoje gaminamos arbatos „Diuretiko“ (UAB „Acorus Calamus“) sudėtį.

Šio darbo tikslas - atlikti polifenolinių rūgščių kokybinę ir kiekybinę analizę rykštenės ekstraktuose taikant efektyvius skysčių chromatografiją.

Buvo paruošti Solidago virgaurea ir Solidago gigantea lapų ir žiedų ekstraktai naudojant vandeninį metanolio tirpalą (70%). Jie buvo analizuojami ESC metodu. Detekcijai naudojamas fotodiodų matricos detektorius.

Gauti rezultatai buvo lyginami su standartinių junginių (chlorogeno ir neochlorogeno rūgščių) duomenimis. Polifenolinės rūgštys nustatomos bangos ilgiui esant 324nm. Buvo identifikuotos dvi polifenolinės rūgštys: chlorogeno ir neochlorogeno. Solidago virgaurea chlorogeno rūgšties yra 1.31%, o neochlorogeno rūgšties – 0.06%. Solidago gigantea chlorogeno rūgšties procentinis kiekis yra 2.35%, o neochlorageno rūgšties – 0.02%.
SUMMARY

S.Kamandulytė master thesis “Analysis of polyphenolic acids belonging to goldenrod (Solidago L.) species” / scientific manager dr. R. Marksienė; Lithuanian University of Health Sciences, Medical Academy, Faculty of Pharmacy, Analytical Chemistry and Toxicology Cathedral. - Kaunas.

Keywords: Goldenrod , high-performance liquid chromatography, polyphenolic acids.

Goldenrod is a perennial plant belonging to the Asteraceae family. It has several pharmacological functions, such as promoting diuresis, anti-inflammatory, analgesic, antispazmolitiniu, antibacterial and antifungal as well as anti-oxidative and anti-tumor activity.

Of goldenrod made a medicaments stimulating diuresis. It also includes in production of tea „Diuretiko“ (UAB „Acorus Calamus”) composition in Lithuanian.

The aim of this research was to make polyphenolic acids qualitative and quantitative analysis of the goldenrod extracts using high-performance liquid chromatography.

Was prepared Solidago virgaurea and Solidago gigantea leaves and flowers extracts of aqueous methanol (70%). They were analyzed in HPLC method. For detection was used photodiode array detector.

The results were compared with standard compounds (chlorogenic and neochlorogenic acids) data. Polyphenolic acids determined at the wave length of 324nm. Has been identified two polyphenolic acids: chlorogenic and neochlorogenic. In Solidago virgaurea chlorogenic acid is 1.31% and neochlorogenic acid - 0.06%. In Solidago gigantea chlorogenic acid percentage is 2.35%, and neochlorogenic acid - 0.02%.
ĮVADAS

Liaudies medicinoje rykštenės rūšies augalai buvo naudojami jau seniai. Žaliava naudojama šlapimo išsiskyrimui skatinti ir kitoms urologinėms ligoms gydyti. Taip pat kaip antiseptinė ir priešuždegiminė priemonė.

Rykštenės augalas paplitęs visoje Lietuvoje ir galima būtų jos žaliavą naudoti efektyvių augalinių preparatų gamyboje, tačiau kol kas nėra atlikta šios žaliavos kokybinė ir kiekybinė analizė [2]. Todėl būtina identifikuoti veikliasias medžiagas esančias žaľaiavą ir įvertinti jų kiekį, siekiant pasiūlyti Lietuvoje augančią Solidago žaliavą kaip vieną iš galimų žaliavos šaltinių.
DARBO TIKSLAS IR UŽDAVINIAI

Darbo tikslas:
Pritaikant efektyviosios skysčių chromatografijos metodiką, atlikti Lietuvoje auginčių Solidago virgaurea ir Solidago gigantea augalų žaliavoje esančių polifenolinių rūgščių kokybinę ir kiekybinę analizę.

Darbo uždaviniai:
1. Išanalizuoti mokslių literatūrą apie Solidago rūšies augalų žaliavos kaupiamas polifenolines rūgštis, jų išskyrimo būdus ir nustatymo metodus.
2. Optimizuoti ir validuoti efektyviosios skysčių chromatografijos (ESC) metodiką, tinkamai įvertinti Solidago žaliavoje esančius biologiškai aktyviaus junginius.
3. Identifikuoti Solidago žaliavos ekstrakte aptiktas polifenolines rūgštis.
1. LITERATŪROS APŽVALGA

1.1. Tiriamasis objektas

1.1.1. Solidago L. apibūdinimas

Rykštėnės yra daugiamečiai augalai, priklausančys astrinių (Asteraceae) šeimai (Ipav.). Šiai genčiai priskiriama iki 120 rūšių, todėl ji viena didžiausių astrinių šeimoje. Gentis paplitusi Šiaurės ir Pietų Amerikoje, taip pat Europoje [5]. Lietuvoje taip pat galima aptikti kelias rykštėnės rūšis: Paprastąją rykštėnė (Solidago virgaurea), Kanadinę rykštėnę (Solidago canadensis) ir Didžiąją rykštėnę (Solidago gigantea).

Rykštėnės užauga iki 1 m aukščio, nors žinoma porūšių (pvz.: S. virgaurea ssp. minuta), kurie tepasiekia 10 cm aukštį. Stiebas žalsvai geltonos arba žalsvai rudos spalvos, su šiek tiek rausvu atspalvui, apvalus, turintis daugiau mažų, matomos griovelius, apatinė dalis lygi ir glotni, o viršutinė dalis šiek tiek daugiau daug padengta plaukeliais. Jame yra kieta balsva šerdis [17].

Lapai žali, apatinėje stiebo dalyje kotuoti, apversto kiaušinio ar elipsės formos, pjūkliškai dantyti. Viršutinių lapų sėdintys, lancetiški, su dantytais kraštais arba beveik lygūs [15]. Viršutinė pusė yra žalia daugiau mažiau lygi, apatinė pusė – pilkšvai žalia, plaukuota, ypač prie gyslų. Lapai yra 8-12 cm ilgio ir maždaug 1-3 cm pločio apatinėje augalo dalyje, o viršuje mažesni [17].

Ipav. Paprastoji rykštėnė (Solidago virgaurea) [5]
1.1.2. Veikliosios medžiagos

Rykštenės rūšies augaluose kaupiasi flavonoidai, diterpeniniai saponinai, triterpeniniai saponinai, eteriniai aliejai, seksviterpenai, polisacharidai, fenoliniai junginiai [5]. Tyrimais įrodyta, kad rykštenėje yra kaupiamos kelios dominuojančios grupės: flavonoidai, taninai ir fenoliniai junginiai, kurios sudaro 12,5% visų Solidago L. augaluose besikaupiančių veikliųjų medžiagų [2].

Žaliavoje veikliųjų medžiagų kiekis priklauso nuo augalo rūšies. Pavyzdžiui Paprastosios rykštenės pagrindiniai komponentai yra:

- flavonoidai (1,5 - 2,4%) (rutinas, astragalinas, kvercetinas, kempferolis ir jų glikozidinės formos),
- cianidino dariniai (antocianidinas),
- fenoliniai glikozidai (leiokarpozidas (0.08 – 0.48%), virgaureozidas A),
- triterpeniniai saponinai (iki 8%),
- fenolinės rūgštys (kavos, chlorogeno (0,2 – 0,4%) ferulo, sinapo, vanilino ir kitos rūgštys),
- nedidelis kiekis eterinio aliejaus (α ir β pineno, limoneno ir kt.). [2, 18]

1.1.3. Farmakologinės savybės

Liaudies medicinoje rykštenės augalinė žaliava buvo naudojama kaip spazmolitinė ir prakaitavimą skatinanti priemonė. Taip pat buvo naudojama kvėpavimo takų ligoms gydyti, nes skystina gleives ir mažina jų išsiskyrimą [5]. Manoma, kad rykštenės žiedai ir lapai skatina skysčių išsiskyrimą, todėl rekomenduojama inkstų ir šlapimo pūslės ligoms gydyti (cistitui, akmenligei, inkstų uždegimui) [35]. Diurezinis poveikis atsiranda dėl Solidago virgaurea sudėtyje aptinkamo fenolinio glikozo (leiokarpozido) ir hidrolizės metu gaunamos leiokarpinės rūgšties, taip pat dėl kitų fenolinių junginių (pvz.: hidroksicinamono rūgštis) [18]. Tyrimų metu rykštenės ekstrakto poveikis buvo lyginamas su diuretko furozemido poveikiu. Gauti rezultatai rodo, kad ekstrakto efektyvumas 75% mažesnis nei furozemido [18]. Taip pat buvo nustatyta ir neigiamas poveikis atsirandantis diurezės metu. Jos metu pašalinti mažėja kalio ir chloridų jonai, kurie taip pat gali būti pašalinti naudojant kitas diuretines priemones (pvz: šlapimo išsiskyrimą skatinančius preparatus) [18]. Rykštenės žaliavos nauda, gydant šlapimo sistemos ligas lyginant su kitais diuretiniais preparatais, galima ir dėl kitų farmakologinių savybių, kuriais ji pasižymi.
Kita iš pagrindinių rykštenės panaudojimo savybių yra priešuždegimineis veikimas. Tai apsprendžia Solidago virgaurea sudėtyje esantys triterpeniniai saponinai. Jie mažina edemas, artritą ir jo sukeliamą skausmą. Priešuždegiminiu poveikiui taip pat pasižymi ir saponinai, flavonoidai ir kavos rūgštis esterai, kurie slopina leukocitų elastazės aktyvumą, taip padidindami įstotelės pralaidumą ir gliukokortikoidų įsiskyrimą [18]. Priešuždegiminis veikimas taip pat pasireiškia dėl rykštenės žaliavoje esančios salicilo rūgšties, kuri efektyviai mažina uždegimą ir jo sukeltą skausmą.

Solidago rūšies augalai taip pat priežiūrėti analgetiniu ir spazmolitiniu poveikiu. Jis mažina šlapimo takų lygiųjų raumenų spazmus [5]. Spazmolitinė poveikis grindžiamas ekstrakto veikimu į kraujagyslių lygiuosius raumenis ir jų atpalaidavimo procesą. Teigiana, kad vazodilatacinis veikimas priklauso nuo proteinkinazės C aktyvumo sparallelizmo, inhibuojant ciklinę nukleotidų fosfodiesterazę arba sumažinus Ca²⁺ įsisavinimą. Pastarasis poveikis atsiranda dėl augalinėje žaliavoje esančių flavonoidų (kvercetino ir kemferolio) [18]. Analgetinio poveikio įrodymui atliekants tyrimas in vitro atskleidė, kad Solidago virgaurea metanolinis ekstraktas sutrukdo jungtis mediatoriams prie vieno iš skausmo receptorių – bradikinino receptorių, dėl šios priežasties šlapinamas skausmas [18].

Ekstraktas taip pat turi antibakterinį ir antigrybelinį poveikį. Solidago virgaurea ekstraktas naikina urogenines bakterijas (Staphylococcus aureus, Staphylococcus epidermidis), tačiau Solidago gigantea ir Solidago canadensis šis aktyvumas yra mažesnis. O taikant šį ekstraktą prieš grybelines kultūras, jis aktyviai naikina Candida rūšių grybelius (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis, Candida pseudotropicalis, Candida guilliermondi, Candida glabrata ir Cryptococcus neoformans). Priešgrybelinės sukuria veikia Staphylococcus aureus bakteriją beveik kaip vankomicinas (ekstrakto aktyvumas buvo 90% antibiotiko aktyvumo). Šis antimikrobinis poveikis grindžiamas žaliavoje esančių specifinių solidaginių rūgščių įsisavinimą [18].

Dar viena svarbi savybė yra priešvėžinis aktyvumas. Rykštenės lapų ekstraktas pasižymi citotoksiniu poveikiu prieš prostatos (PC3) ir krūties (MDA435) karcinomas [5]. Atlikti tyrimai in vivo su pelėmis parodė S. virgaurea aktyvumą, ne tik prieš prostatos ir krūties karcinomas, tačiau rykštenės ekstraktas taip pat turėjo įtaisos melanomos (C8161) ir plaučių (H520) karcinomos vystymuisi.

1.1.4. Fenoliniai junginiai – polifenolinės rūgštys

Fenoliniai junginiai yra viena plačiausių antrinių metabolitų grupė augaluose. Ją gali sudaryti paprastieji fenoliai, falvonoidai, polifenolinės rūgštys, taninai, stibenai [33]. Fenoliniai junginiai turi bent vieną aromatinį žiedą, supjungtą su viena ar daugiau hidroksi grupėmis. Iš pavadinimo jau galima suprasti, kad polifenolinės rūgštys yra sudarytos iš keleto hidroksi grupių, taip pat savo sudėtyje turinčios hidroksi rūgšties liekaną. Jos gali būti skirstomos į dvi grupes: hidroksibenzokarboksik rūgštis (pvz.: galų rūgštis) ir hidroksicinamono rūgštis darinius (pvz.: kumarino, kavos rūgštis) [14].

Polifenolinines rūgštis, tokias kaip kavos, kumarino, vanilino ir ferulo, kaupia dauguma augalų, [33] tačiau yra tokios, kurios kaupiamos tik tam tikros rūšies augaluose. Jos atsiranda apdorojimo metu kaip metabolitinis produktas.

Rūgščių kiekis priklauso nuo augalo brendimo stadijos. Taip pat kiekio svyravimai gali atsirasti dėl augimo sąlygų [33]. Dažnai polifenolinės rūgščių kiekis reikšmingai skiriasi atskirose augalo dalych (pvz.: augalo vaisiuose galima rasti daugiau polifenolinės rūgščių nei jo lapuose) [33].

Dažniausiai polifenolinės rūgštys būna susijungtos esteriniai ar acetoliniai ryšiais su celiuloze, kitaip fenoliniai junginiai, gliukoze ar kitomis medžiagomis [33]. Polifenolinės rūgštys gali egzistuoti esterių formos susijungusios tarpasavyje su kitomis rūgštis mis ir sudaryti naujas rūgščias (pvz.: kavos ir kvino rūgščių esteris – chlorogeninė rūgštis).

Rykštenės augalinėje žaliavoje taip pat gausu polifenolinės rūgščių ir jų glikozidinių formų. Be dažniausiai mokslinkiuose straipsniuose aptariamų polifenolinės rūgščių, tokių kaip kavos, chlorogenog, ferulinė, sinapo, vanilino, kaupiami specifiniai fenoliniai glikozidai – leiokarpozidas ar virgaureozidas A (randamas S. virgaurea žaliavoje) [18].

1.1.4.1. Chlorogeno rūgštis

Chlorogeno rūgštis tais natūralus cheminis junginis, kuris yra kavos ir kvino rūgščių esteris (2pav). Klasifikuoja ji priskiriama hidroksicinamono rūgštis dariniams. Chlorogeno rūgštis
pavadinimas kildinamas iš graikiškų žodžių reiškiančių „nuliamentis šviesiai žali“. Tai aiškinama tuo, kad augaluose žalios spalvos pigmentas atsiranda oksiduojantis chlorogeno rūgščiai. [36]

Chlorogeno rūgštis (ang. 3-Caffeoylquinic acid) gali turėti keleta izomerių: kriptochlorogeno rūgštį (ang. 4-O-caffeoylquinic acid), neochlorogeno rūgštį (ang. 5-O-caffeoylquinic acid) ir kitas, dėl funkcinėse grupėse atsiradusiuų izomerizacinių posūkių.

Chlorogeno rūgštis (ang. 3-Caffeoylquinic acid) gali turėti keleta izomerių: kriptochlorogeno rūgštį (ang. 4-O-caffeoylquinic acid), neochlorogeno rūgštį (ang. 5-O-caffeoylquinic acid) ir kitas, dėl funkcinėse grupėse atsiradusiuų izomerizacinių posūkių.

2pav. Chlorogeno rūgštis [36]

Atliekant chlorogeno rūgštės UV spektrometrinę analizę absorbcijos maksimumas stebimas esant 325 nm bangos ilgiui. [36]

Chlorogeno rūgštis absorbuojama plonajame žarnyne [30]. Metabolizacijos metu žmogaus organizme ji metabolizuojama iki kavos rūgšties, m-hidroksihipūro rūgšties, m-kumarino rūgšties gliukuronido ir dihidroferulo rūgšties. Šie metabolitai buvo aptikti žmogaus šlapime pavartojus 1g chlorageno rūgšties [9]. Tačiau ne visa chlorogeno rūgštis yra metabolizuojama, dalis su šlapimu ir išmatomis išskiriama nepakitusi (~67%) [30].

Toks platus panaudojimas yra dėl chlorogeno rūgšties galimų farmakologinių savybių. Ji vaidina svarbų vaidmenį užkertant kelią įvairioms ligoms, susijusioms su oksidaciniu stresu, pavyzdžiu, vėžio, širdies ir kraujagyslių, senėjimu ir neurodegeneracinėmis ligomis [8]. Antioksidacinius aktyvumus chlorogeno rūgštis yra didesnis nei vitaminio C ar vitaminio E. Tyrimo metu nustatyta, kad laisvųjų radikalų atsiranda mažiau vartojant chlorogeno rūgštį, nei naudojant vitaminą C ar vitaminą E [34]. Chlorogeno rūgštis gali slopinti mutageninių ir kancerogenuių N-nitrozo junginių susidarymą, nes slopinama N-nitrozinimo reakcija in vitro. Be to, chlorogeno rūgštis gali slopinti
DNR pažeidimus, ši savybė įrodyta atlikus tyrimus in vitro. Atlidkti epidemiologiniai tyrimai rodo, kad chlorogeno rūgščias svarbi storosios žarnos ir slapimo sistemos vėžio gydymui [30].

Chlorogeno rūgščias taip pat turi antibakterinių ir antivirusinių savybių. Ji perspektyvus pirminis junginys naudojamas medicinoje, kaip junginys atsparus ŽIV sukeltam AIDS susirgimui [11], taip pat aktyvus prieš nedidelį kieki poliomielito viruso [34].

Be to chlorogeno rūgščius gali būti naudojama kaip antihipertenzinė priemonė, [29] nes slopina mažo tankio lipoproteinų (MTL) oksidaciją [30]. Taip pat turi įtakos gliukožės išsiskyrimi į kraują po valgio. Šis procesas yra sulėtinamas, dėl to chlorogeno rūgščių turintys produktai gali būti naudojami ir kaip svorio mažinimo priemonė. [29]

Chlorogeno rūgščiai taip pat pasižymi psichostimuliaciniu poveikiu pelėms, nes metabolizacijos proceso metu ji skyla išskirdama kavos rūgštį, kuri ir pasižymi šiuo stimuliaciniu poveikiu [29].

1.1.4.2. Neochlorogeno rūgščias

Neochlorogeno rūgščias (3pav.) yra natūralus polifenolinis junginys randamas kai kurių rūšių augaluose (pvz.: persikuose). Ji yra chlorogeno rūgšties izomerės. [37]

Farmakologinis neochlorogeno rūgšties poveikis yra panašus į chlorogeno rūgšties poveikį. Ji taip pat pasižymi antioksidacinėmis, priešvėžinėmis savybėmis. Gali sumažinti MTL oksidaciją [34].

Maistas gausus neochlorogeno rūgščias gali būti potencialus chemoterapijos prevencijoje dėl vėžinių ląstelių augimo inhibavimo [34]. Ji taip pat mažina kancerogninių medžiagų įsisavinimą ir apykaitą. Neochlorogeno rūgščias apsaugo ne tik nuo storosios žarnos vėžio, bet tyrimų metu buvo įrodyta, kad 10mg/l koncentracija slopina krūties vėžio ląstelių (MD-MGA-435) augimą, o normalioms krūties epitelio ląstelėms (MCF-10A) neigiamo poveikio neturi [28].

Ji taip pat pasižymi vidurius laisvinančiomis savybemis, kurios ryškūs rezultatai stebimis atlikus tyrimą su slyvų žaliava [37].
1.2. Polifenolinių rūgščių ekstrakcija

Prieš atliekant augalinės žaliavos kokybinę ir kiekybinę analizę pirmiausiai reikia pasiruošti tinkamą ekstraktą. Polifenolines rūgščis galima išgauti iš šviežių, šaldytų arba džiovintų augalų mėginių. Tyrimų metu nustatyta, kad šaldyta žaliava turi daugiau fenolinių junginių nei džiovinta [14], tačiau apdorojimo ir saugojimo procesai yra sudėtingi.

Dažniausiai naudojami eksharentai yra alkoholiai (metanolis, etanolis), acetonas, dietileteris ir etilo acetatas. Tačiau fenolių rūgščių turinio didžiųjų didesnį poliškumą (benzoinė, cinamono rūgščių) negalima išgauti su grynais organiniais tirpikliais, todėl rekomenduojama naudoti mišinius iš alkoholio ir vandens arba acetono ir vandens [33]. Naudojant metanolį efektyviausiai išekstrahuojami mažesnės molekulinės masės polifenolinės rūgštys, o didesnės molekulinės masės fenolių ekstrakcijai geriau naudoti vandeninį acetono tirpalą [14].

Polifenolinių rūgščių ekstrakcijai gali būti naudojami įvairūs metodai:

1) Ekstrakcija organiniais tirpikliais:
 a) Maceracija;
 b) Perkoliacija;
2) Karšta nuolatinė ekstrakcija (Soksleto);
3) Distiliacija vandens garais;
4) Ekstrahavimas suslėgtu tirpikliu;
5) Superkritinių skystių ekstrakcija;
6) Ekstrakcija, parenta mikrobangomis;
7) Ekstrakcija, naudojant ultragarsą.

1.2.1. Maceracija

Tai vienas iš seniausių ekstrakcijos metodų. Žaliava su ekstrahentu patalpinama į sandarų indą, mišinyje nuolat maišomas tam tikrą laiką (5 – 7 paras). Po ekstrakcijos ištrauka nupilama, o žaliava perplaunama mažu kiekio ekstrahento. Vėliau ji nuspaudžiama ir nuoplovos sumaišomas su gauta ištrauka [21].
Viename iš moksliinių straipsnių buvo aprašoma *Solidago virgaurea* žaliavos maceracija etanolio ir metanolio mišiniu. Žaliava su tirpikliu buvo maceruojama 1:10 santykiu dešimtų dienų nuolat maišant. O gautas ekstraktas kiekybiškai ir kokybiškai tiriamas analitiniais metodais [12].

Tačiau ilgas ekstrahavimo laikas yra viena iš priežasčių, dėl kurių šis ekstrahavimo metodas nėra pakankamai efektyvus. Taip pat ekstrakcijai naudojami dideli kiekiai organinių tirpiklių, kurie gali būti viena iš aplinkos taršos priežasčių, o ši taip pat riboja metodo tinkamumą tyrimo metu [14].

1.2.2. Perkoliacija

Perkoliacijos metodu naudojama veiklosios medžiagos ekstracijos organiniu tirpikliu. Šis metodus taip pat atliekama ilgą ekstrakcijos laiką, kuris turi neigiamą reikšmę polifenoliniių rūgščių ekstrakcijai. Dėl šios priežasties ši ekstrakcija nėra plačiai naudojama polifenoliniių rūgščių ekstrakcijai.

1.2.3. Sokslėto ekstrakcija

Šios ekstrakcijos rūšiai naudojamas Sokslėto aparatas (4pav.). Norint išekstrahuoti polifenolines rūgštis Sokslėto ekstrakcijos metodu, augalinę žaliavą pirmiausia ekstrahuojama heksanu, kurio pagalba pašalinami lipidai, o po to etilo acetatu arba etanoliu ekstrahuojami fenolinai junginiai. Tačiau šis metodas netinka junginiams, kurie jautrūs šilumai [21]. Taip pat ekstrakcija galima atlikti su vandeniniu metanolio tirpalu ar acetonitrilu, kurie gerai išekstrahuoja fenolines rūgštis, tačiau ekstrakcijos metodas vykdomas net 12val [1, 33].

Sokslėto ekstrakcija ne visada naudojama dėl reikalingo didelio ekstrahentų kiekio ekstrahavimo procesui, kurie gali būti žaliingi aplinkai. Taip pat ilgo ekstrahavimo laiko ar galimos veikliųjų medžiagų degeneracijos, kurių gali sukelti šviesos, temperatūros poveikiai ar galimos fermentinės reakcijos [24]. Dėl šių priežasčių geriau naudoti tobulesnius ekstrahavimo metodus.
1.2.4. Ekstrakcija, paremta mikrobangomis

Mikrobangomis vykstanti ekstrakcija remiasi tirpiklio ir medžiagos kaitinimu mikrobangomis dėl medžiagos dipolio sukimosi ir joninio laidumo. Mikrobangos turi didelį joninį laidumą, dėl kurių mikrobangų energija virsta šiluma. Ekstrakcijai naudojamas 300 - 300000 MHz elektromagnetinių bangų dažnių intervalas. Dažniausiai naudojama - 2450 MHz (toks bangų dažnis yra ir buitinėse mikrobangų krosnelėse). Šis dažnis parenkamas dėl išekstrahuotų medžiagų stabilumo, kad nuo šilumos medžiagos nedenatūruotų ar vyktų mažesnis jų skilimas [27].

Šios metodikos pagrindinis privalumas prieš klasikinius ekstrahavimo metodus yra sutrumpėjęs ekstrahavimo laikas ir naudojamo ekstrahento kiekio sumažinimas. Tačiau ekstrakcijos metu temperatūra gali pakilti net iki 100°C, dėl ko sunkėja didesnės molekulinės masės fenolinių junginių ekstrakcija [14].
1.2.5. Ekstrakcija, naudojant ultragaršį

Veikiant ultragaru augalinėje žaliavoje esančios veikliosios medžiagos gali būti atskiriamos kaip laisvieji radikalai.

Ši technologija yra galima polifenolinių rūgščių ekstrakcijai, nes nereikia sudėtingos aparatūros ir ji yra pigi palyginti su sudėtingesniais metodais. Atlitti tyrimai rodo, kad naudojant ekstrakciją ultragaru patiriamas žymiai mažesnis polifenolinių rūgščių skilimas lyginant su kitais ekstrakcijos metodais [14].

1.2.6. Kiti ekstrakcijos metodai

Kiti ekstrakcijos metodai taip pat gali būti naudojami žaliavos ekstrakcijoje. Tai gali būti ekstrahavimas suslėgtu tirpikliu, superkritinių skysčių ekstrakcija ar keta kietafazė ekstrakcija. Šie metodai, taip pat kaip ir jau minėti prieš tai ekstrakcijos metodai, gali būti naudojami norint išekstrahuoti veikliausias medžiagas iš augalinės žaliavos. Gautas ekstraktas toliau gali būti naudojamas veikliųjų medžiagų išgautų iš Rykštenės augalinės žaliavos analizei, tačiau reikia atsižvelgti į ekstrakcijos laiką ir temperatūrą, kuri turi reikšmę ekstrakto kokybei.

1.3. Veikliųjų medžiagų kiekybės ir kokybės nustatymo metodai

Polifenolinių junginiai atlikus jų ekstrakciją iš augalinės žaliavos kokybiškai ir kiekybiškai išširiami atitinkamai analizės metodus. Jų analizei dažniausiai naudojama efektyviai skysčių chromatografija (ESC), taip pat gali būti naudojama duų chromatografija, masių spektrometrija, kapiliarinė elektroforezė ir kiti analizės metodai [24].
1.3.1. Efektyviosių skysčių chromatografija

Tai viena iš efektyviausių ir dažniausiai naudojamų analizės metodikų. Jos metu galima ne tik analizuoti norimus junginius, bet ir atskirti nuo kitų ištraukoje esančių biologiskai aktyvių junginių [2]. ESC atlikimo metu kolonėlėje medžiagos atskiriamos pagal jų masę. Naudojamos trumpos (5–15 cm) kelių milimetrų (3,9 – 4,6 mm) vidinio skersmens plieninės kolonėlės, jos pripildytos labai mažų (3–5 μm) nejudrios fazės granulių (dažniausiai silicio oksido polimerų).

Judri fazė pumuoja per kolonėlę naudojant didelio slėgio siurblius [6]. Atliekant fenolinių junginių analizę ESC metodu ji vykdoma kambario temperatūroje, nors kai kurių šaltinių duomenimis kolonėlėje tempatūra palaikoma apie 30–40°C norint sutrumpinti analizės laiką. O norint gauti tikslesnus junginių sulaukymo laikus analizė gali būti atliekama žemesnėje temperatūroje (apie 10°C).

Norint gauti aiškias chromatografines smailes į judančiąją fazę taip pat yra dedama rūgščių. Nešiklio pH reikšmė turi būti api 2 – 4. Dėl šios priežasties naudojama acto, skruzdių ar fosforo rūgštis. Taip pat jių atitinkantys buferiai. [33]

Buvo gilinamių į mokslišius straipsnius. Viename iš jų buvo pateiki duomenys apie atliktą tyrimą su rykštenės augaline žaliavos kokybės ir kiekvieno rūgštės analizei naudojant ESC su fotiodų matricos detektoriumi. Analizė buvo atlikama kolonėlėje Luna 5 mm C18 (2) 250 mm × 4,6 mm (Phenomenex) esant 35°C temperatūrą. Chromatografavimas atliekamas 40min. Naudota tirpiklių sistema (10% vandeninis acetonitrilo tirpalas ir 55% vandeninis acetonitrilo tirpalas).
Chromatogramoje palyginus su etaloniniais tirpals 330 nm riboje aptikta rosmarininė rūgštis ir chlorogeno rūgštis [31].

1.3.2. Spektrofotometrija

Paprastieji fenoliniai junginiai turi absorbncijos maksimumus 220 – 320 nm, bet jų absorbncija priklauso nuo tirpiklio savybių ir pH reikšmių. Tačiau spektrometrijos metodą riboja ekstrakte esančios papildomos medžiagos, tokios kaip amino rūgštys, nes jos taip pat absorbuoja UV spindulius [33].

Fenolinių junginių kiekbybinis nustatymas augalinėje žaliavoje atliekas sudarant spalvotus kompleksus su cheminémis medžiagomis. Jos gali būti molibdenas ir volframо fosforo rūgštis, kurie šarminiame tirpale jungiasi su paprastaisiais fenolais ir aptinkami 760 nm bangos ilgio srityje (Folin – Denis ir Folin – Ciocalteu kolorimetriniai metodai) [33]. Tačiau viename iš straipsnių taikant šį metodą rykštenės ekstrakto analizei absorbcijos maksimumas buvo matuojamas 765nm bangos ilgyje, kai etalonu buvo naudojama galo rūgštis [26].

Fenoliniai junginiai taip pat sudaro kompleksus su aliuminio jonu [Al(III)]. Jonas gali sudaryti kompleksus su karbonilo ar hidroksilo grupe esančia kavos rūgštyje, flavanoiduose ar taninuose. Kompleksas absorbuoja 425nm bangos ilgią. Bendras kavos rūgšties kiekis nustatomas į metanolinį ekstakto pridėjus AlCl₃ ir NH₄Cl kol pH bus lygus 4,8. Šio tirpalo optimis tankis matuojamas esant 355nm bangos ilgyje [33].

Rykštenės žaliavose esančių fenolinių junginių nustatymas spektrofotometrinės analizės metodu taip pat aprašomas 2009m. Prancūzų farmakopėjoje. Tačiau bendras fenolinių junginių kiekis matuojamas esant 425nm bangos ilgiui [19].

Spektrofotometrinių metodas gali būti taikomas ir su kitomis cheminémis medžiagomis. Tokiu kaip Arnovo regentas, HCl ir NaOH. Susidaręs kompleksas su polifenolinėmis rūgštimis matuojamas esant 490nm bangos ilgiui, o polifenolinių rūgščių kiekis apskaičiuojamas pagal kavos rūgšties ekvivalentus [31].

Spektrofotometriniai metodai gali būti panaudoti pirmminiams ekstraktų tyrimams, kuriems nereikalingas didelis tikslumas. Tačiau šis metodas taikomas tik bendram fenolinių junginių kiekio nustatymui ir nėra pakankamai specifinis. Dėl šios priežasties dažniausiai taikomi tikslesni ir atrankesni metodai, tokie kaip ESC.
1.3.3. Kapiliarinė elektroforezė

Norint nustatyti fenolinius junginius kapiliarinės elektroforezės metodu gali būti naudojama viena iš šių KE rūsių: micelinė elektrokinetinė chromatografija (MEKC), kapiliarų elektrochromatografija (KEC) ir kapiliarinė zonų elektroforezė (KZE) kartu su UV spindulių ar masių spektrometrijos (MS) nustatymais. Naudojant šiuos metodus nustatomi skirtinę fenoliniai junginiai [24].

Solidago gigantea augalinėje žaliavoje buvo nustatyti rutinas, isokvercitrinas ir chlorogeno rūgštis naudojant kapiliarinę elektroforezę [31].

1.3.4. Plonasluoksnė chromatografija

Plonasluoksnės chromatografijos metodas yra reglamentuotas Europs Farmakopėjoje ir pritaikytas rykštenės žaliavos analizei [17].

Aprašoma tiriamojo tirpalo paruošimas. Jis gaminamas iš 0,75g žaliavos, ją užpilant 5ml metanolio. Tirpalas virinamas 10min su grįžtamuoju šaldytuvu. Etaloninis tirpalas gaminamas iš 1mg chlorogeno rūgštis ir 10ml metanolio.

Etaloninio ir tiriamojo junginių rezultatai chromatografinėje plokštėje turėtų sutapti, nebent tiriamojo junginių saugojojo chromatografinėje plokštėje turėtų sutapti, nebent tiriamajame junginyje yra papildomų medžiagų. Jos išsiskiria kaip papildomos dėmės arba gali persidengti su nustatomojo junginio dėme (5pav).

Nors plonasluoksnės chromatografijos metodas yra reglamentuotas Europos Farmakopėjoje, tačiau analizės metu nustatoma tik kokybinė žaliavos sudėtis. Kiekybinis nustatymo metodas yra sudėtingas ir neefektyvus.

![5pav. Plonasluoksnės chromatografijos pavyzdys](image)

Fig. 1. Thin layer chromatography- saponins: 1- 2- S. gigantean saponin, 3 - S. virgaurea saponin, 4 – Merck saponin, 6 - S. gigantea extract, 7 - S. virgaurea extract, 8 - S. canadensis extract

5pav. Plonasluoksnės chromatografijos pavyzdys [15]

1.4. Augalinės žaliavos analizės parinkimas

Išanalizavus galimus ekstrakcinius metodus naudojamus polifenolinių rūgščių analizei, buvo pasirinkta naudoti ekstrakcija ultragarso bangomis. Nes jos metu yra efektyviai išskiriamos tiriamosioms medžiagoms iš vaistinės žaliavos, o gautas ekstraktas turi nedaug balastinių medžiagų, kurios trukdytų tolimesnei tyrimo eiga.

Siekiant kokybiškai ir kiekvieniškai įvertinti polifenolines rūgštos optimaliausia naudoti efektyviosios skysčių chromatografijos metodą, nes jo metu galime ne tik įvertinti junginių kiekvienius parametrus, bet ir kokybiškai identifikuoti iš Solidago žaliavos išskyrusias medžiagas. Naudojant ESC metodiką Solidago žaliavos ekstrakte išskirtos polifenolinės rūgštys identifikuojamos pagal standartinius junginius, o kiekvienių duomenys yra statistiškai tikslūs.
Prieš atliekant žaliavos analizę, yra svarbu sukurti tinkamą analizės metodiką ir moksliai ją pagrįsti (validuoti).

Metodo validacija – tai visuma priemonių, kurios taikytos siekiant nustatyti, ar teisingai parinkti parametrai, ar metodas veikia tinkamai naudojant numatytas sąlygas. Metodo tinkamumas vertinamas pagal pagrindinius specifinius reikalavimus, pritaikytus numatytais metodu:

1. Specifiškumas;
2. Glaudumas;
3. Detekcijos ribos;
4. Tiesiškumas. [22, 23]

Rezultatų glaudumas įvertina atsitiktines klaidas ir yra nustatomas vientomis sąlygomis per trumpą laiko tarpą, t.y. eksperimentas pakartojamas tą pačią dieną ne maţiau tris kartus arba atliekant po vieną analizę ne trumpiau kaip tris dienas iš eilės nekeičiant sąlygų, su ta pačia įranga ar prietaisu [23]. Glaudumo nustatymo metu yra nustatoma pasikartojamumo, tarpinio preciziškumo ar atkuriamumo kriterijai. Jie gali būti įvertinti nustatant dispersiją, standartinį nuokrypiį arba santykinį standartinį nuokrypių. Jei naudojamos santykinis standartinis nuokrypis, jis neturėtų viršyti 5%, siekiant, kad glaudumas būtų tinkamas.

Visi aprašyti parametrai turi būti įvertinti prieš atliekant žaliavos analizę. Jeigu kiekvienas parametras yra pagrindžiamas ir atitinka reikalavimus, tai reiškia, kad naudojama metodika yra tiksli analizuojamoms medžiagoms įvertinti.
2. EKSPERIMENTINĖ DALIS

2.2. Tyrimo objektas

Parastosios rykštenės (*Solidago virgaurea*) ir didžiosios rykštenės (*Solidago gigantea*) lapų ir žiedų metanoliniai ekstraktai. Žaliavą buvo surinkta skirtuose Vilniaus regiono vietose (Santariškių, Riešės, Trakų Vokės, Nemenčinės teritorijose) skirtuose skateboardinio stadijų metu. Žaliavą isdžiovinta šildomoje džiovykloje 45 – 48°C temperatūroje ir saugoma tamsioje, sausoje, vėsioje ir vėdinamoje patalpoje.

2.3. Reagentai

Reagentai naudojami tyrimo metu:
- Išgrynintas vanduo;
- ≥99,9% metanolis (Sigma – Aldrich, Vokietija);
- ≥99,9% trifloracto rūgštis (*ang. TFA*) (Sigma – Aldrich, Vokietija);
- ≥99,9% acetonitrilas (Sigma – Aldrich, Vokietija);
- 95.33% chlorageno rūgštis (Sigma – Aldrich, Vokietija);
- >98% neochlorogeno rūgštis (HWI ANALYTIKGMBH, Vokietija).

Aparatūra ir įrengimai naudojami tyrimo metu:
- Ultragarso vonelė BioSonic UC100 (Mavajai, JAV);
- Chromatografas Waters 2695 (Waters Corporation, Milford, USA);
- Fotodiodų matricos detektorius Waters 996;
- 3 µm YMC kolonėlė 4,6×150 mm (YMC Europe Gmbh, Vokietija);
- Vandens gryninimo sistema (MILLIPORE).

2.4. Polifenolinių rūgščių ekstrakcija

Solidago L. genties augalų žiedų ir lapų ekstrakcijai ultragarso naudota ultragarso vonelė BioSonic UC100 (Mavajai, JAV). Ekstrakcijai atlikti buvo pasirinktas vandeninis 70% metanolio tirpalas (V/V). Tiriamos žaliavos ekstraktai buvo gaminami santykiu 1:100 (s/v), tiriamojo objekto.
sveriant 0,1 gramo ir užpilant tirpikliu iki 10 ml žynos matavimo kolboje. Paruošti ekstraktai 50 min sonifikuojami ultragarso vonelėje, palaikant pastovią 25°C temperatūrą.

Gautas ekstraktas filtruojamas pro popieriaus filtrą siekiant atskirti nuo stambų žaliavos priemaišų. Atlikus pirmąjį filtracijos etapą atliekama antrasis – filtruojama per 0,22 µm sterilių nailoninį švirkštinį filtrą, kurio diametras 13 mm (gauta iš Carl Roth GmbH & Co. KG, Vokietija). Po filtracijos gautas švarus ekstraktas naudojamas kokybiniams ir kiekybiniams tyrimams.

2.5. Efektyviosios skysčių chromatografijos metodo sąlygos

Kokybiniams ir kiekybiniams Solidago L. esančių veikliųjų tyrinams atlikti optimizuotas ir validuotas efektyviosios skysčių chromatografijos metodas. Analizė atlikta su Waters 2695 chromatograufu (Waters Corporation, Milford, USA) bei fotodiodų matricos detektoriumi Waters 996. Veikliųjų junginių atskyrimui naudota 4,6×150 mm, 3 µm YMC kolonė (YMC Europe Gmbh, Vokietija), kuri visos analizės metu laikyta išoriniame termostate, palaikant pastovią 25ºC temperatūrą. Analizės metu injekuota 10 µl tiriamo tirpalo. Mobilios fazės tėkmės greitis – 1.0 ml/min, gradientinė sistema sudaryta iš: 0,05% trifluoracto rūgštis vandenyje ir acetonitrilo. Eliucija buvo vykdoma skirtingais laiko intervalais, kurio metu gradientinės sistemos komponentų procentali koncentracija skyrėsi (1 lentelė). Chromatografinių smailių identifikavimas atliktas pagal analičių ir standartinių junginių sulaukymo laikų bei UV absorbcijos spektų 210 – 400 nm intervalo ribose sutapimus. Fenolinių rūgščių detekcija atlikta prie 324 nm bangos ilgio.

1 lentelė. Gradientinės sistemos komponentų sudėtis skirtingais laiko intervalais

<table>
<thead>
<tr>
<th>Laikas (min)</th>
<th>Tėkmės greitis (ml/min)</th>
<th>Komponentų procentali koncentracija (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Trifluoracto rūgštis</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>95</td>
</tr>
</tbody>
</table>
3. REZULTATAI IR JŲ APTARIMAS

3.2. Efektyviojių skysčių chromatografijos metodikos optimavimas

Metodikos optimavimui buvo pasirinkta moksliniame literatūros šaltinyje aprašyta metodika tiriamoms polifenolinėms rūgštimis įvertinti rykštės žiedų ir lapų žaliavojų [7]. Analizė atlikta su metanolinio lapų ir žiedų ekstraktu atliekant ekstrakcijų ultragarsu. Atliktas metodikos optimavimas, pritaikant detektorių, eliuaciją, tirpiklių sistemą, injekavimo tūrius, detektoriaus bangos ilgius, prie kurių buvo atliekama analizė.

Diodų matricos detektoriaus pasirinkimą lėmė jo jautrumas chromatografijuojamiems mišinio komponentams, bei galimybė užrašyti junginių UV absorbncinius spektrus, pritaikant jų polifenolinių junginių identifikavimui bei įvertinant metodo specifikumui. Sėkmingam polifenolinių junginių pilnam atskryrimui buvo pritaikytas gradientinis eliuavimas. Tirpiklių sistema buvo sudaryta iš 0,05% trifluoracto rūgšties vandenyje ir 99,9% acetonitrilo.

Optimizavus ESC metodiką gaunami rezultatai yra tikslūs, o duomenys atsikartojantys. Ši optimizuota metodika yra tinkama atlikti junginių kokybiniam ir kiekybiniam nustatymui.

3.3. Metodikos validacija

Metodo tinkamumas vertinamas pagal pagrindinius specifinius reikalavimus, pritaikytus numatytam metodui:

1. Specifiskumas;
2. Gladumas;
3. Metodo aptikimo riba;
4. Metodo nustatymo riba;
5. Tiesiškumas.

3.3.1. Specifiskumas

Specifiskumas įrodomas vertinant sulaišymo laikų ir spektrinių duomenų sutapimus. Chromatogramoje turi sutapti standartinių junginių sulaišymo laikas su analizuojamųjų junginių sulaišymo laikais, bei jų spektriniais duomenimis. Jei sulaišymo laikai neatitinka standarto sulaišymo
laiko, stebima spektriniai parametrai, kurie gali patvirtinti ar gauta chromatografinė smailė yra polifenoolinė rūgštis.

Atlikus tyrimą buvo gauta neochlorogeno rūgšties sulaikymo laikas, kuris yra 8.32 min, ir chlorogeno rūgšties – 11.26 min. (6 pav., 7 pav.)

6 pav. Solidago lapų žaliavos chromatograma

7 pav. Solidago žiedų žaliavos chromatograma

Atliekant chromatografiją su ekstraktu taip pat buvo atptikti kiti junginiai, kurių sulaikymo laikai taip pat pasikartodavo atitinkamai laiko momentu: 3 junginio po 11.89 min, 4 junginio – 15.29 min, 5 junginio – 16.32 min, 6 junginio – 17.1 min.
Šie junginiai buvo identifikuoti kaip polifenolinės rūgštys pagal spektrinius duomenis. Junginių detekcija atlikta esant 324nm bangos ilgijui. Iš to galime daryti prielaidą, kad šie junginiai yra iš polifenolinių rūgščių grupės. (8pav., 9pav.)

![8pav. 3 junginio spektras](image)

8pav. 3 junginio spektras

![9pav. 4 junginio spektras](image)

9pav. 4 junginio spektras.

Analizės metu nepavyko identifikuoti minėtų junginių, dėl to, kad sulaikymo laikai skyrėsi nuo analizuotų standartinių junginių sulaikymo laikų. Buvo bandyta tirti visa eilė etaloninių medžiagų: kavos, ferulo, galo, vanilinė, rozmarino, elago rūgštys. Atlikus išsamesnius tyrimus pagal sulaikymo laikus šių medžiagų identifikuoti nepavyko, bet vertinant spektrinius duomenis, galima teigti, jog šie junginiai atitinka polifenolines rūgštis. (10pav., 11pav.)
Taigi, atlikus specifiškumo įvertinimą pavyko identifikuoti tik dvi polifenolines rūgštis: chlorogeno ir neochlorogeno. Šios rūgštys tenkino specifiškumo kriterijus, dėl to galima teigti, jog šioms rūgštims galima taikyti kokybinę analizę.

3.3.2. Rezultatų glaudumas

Santykinis standartinis nuokrypis (SSN) – tai atsitiktinio dydžio standartinio nuokrypio ir vidurkio santykis, kuris išreiškiamas procentais. Jis buvo skaičiuojamas leidžiant po šešias injekcijas iš to pačio mėginio vieną dieną. Po to ši procedūra buvo atliekama dar dvi dienas po šešias injekcijas iš to pačio mėginio ir apskaičiuojamas santykinis standartinis nuokrypis. Gauti rezultatai pateikiami 2 lentelėje.

Glaudumas gali būti įvertinamas keliais lygiais, dažniausiai tiriama:

- Pakartojamumas – atliekama tą pačią dieną keli mėginiai iš eilės.
- Tarpinis preciziškumas – analizuojama skirtingomis dienomis.

2 lentelė. Santykinis standartinis nuokrypis

<table>
<thead>
<tr>
<th></th>
<th>Chlorageno rūgšties</th>
<th>Neochlorageno rūgšties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakartojamumas</td>
<td>0,8%</td>
<td>0,9%</td>
</tr>
<tr>
<td>Tarpinis preciziškumas</td>
<td>1,1%</td>
<td>0,8%</td>
</tr>
</tbody>
</table>

Įvertinus pakartojamumą (12pav.) ir tarpinį precizįskumą nustatyta, kad santykinis standartinis nuokrypis neviršija leistinų ribų. ESC metodika yra tinkama jei SSN neviršija 5 %. Dėl to mano metodika yra tinkama kiekybiniam medžiagų įvertinimui.

![12pav. Chlorogeno ir neochlorogeno rūgščių pasikartojamumą parodanti chromatograma](image-url)
3.3.3. Metodo aptikimo ir nustatymo ribos

Validuojant metodiką buvo nustatomos neochologeno ir chlorogeno rūgščių aptikimo ir nustatymo ribos. Jos įvertinamos lyginant analitės smailių aukštį ir bazinės linijos triukšmą. Gauti rezultatai pateikiami 3 lentelėje.

3 lentelė. Neochlorogeno ir chlorogeno rūgščių aptikimo ir nustatymo ribos (µg/ml)

<table>
<thead>
<tr>
<th></th>
<th>Neochlorogeno rūgštis</th>
<th>Chlorogeno rūgštis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aptikimo riba</td>
<td>0.22</td>
<td>0.0995</td>
</tr>
<tr>
<td>Nustatymo riba</td>
<td>0.77</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Kadangi gauti rezultatai yra palyginti mažos koncentracijos, galima spėti, kad naudojant šią metodiką bus nesunkiai aptikta ir nustatyta analizuojamos rūgštys tiriamajame ekstrakte.

3.3.4. Tiesiškumas

Tiesiškumas – yra gebėjimas (nustatytose ribose) gauti detektoriaus atsako įverčius chromatogramose (t.y. programinės įrangos suintegruotos smailės plotas [mAU×s]), kurie tiesiogiai proporcingi analitės kiekiui koncentracijai mėginyje [4]. Įvertinama kalibravimo kreivės metodu.

Sudarinėjant kalibracines kreives buvo paruošiami standartiniai junginiai iš chlorogeno ir neochlorogeno rūgščių. Pirminių standartinių junginių koncentracija pagaminta iš 70% etanolio ir neochlorogeno rūgšties buvo 0.3mg/ml, o chlorogeno rūgšties – 0.2mg/ml. Kiti etaloniniai tirpalai gaminami skiedžiant standartus 70% etanolium lysiomis dalimis. Chlorogeno rūgšties kalibracijos kreivė sudaroma iš 5 taškų, o neochlorogeno rūgšties – iš 6. (13pav., 14pav.)

[13pav. Neochlorogeno rūgšties kalibracinė kreivė]
Eksperimentų metu buvo sudarytos kalibracinės kreivės. Abiejų analičių kalibracinių kreivių koreliacijos koeficientai didesni nei 0,99 (Chlorogeno rūgšties $R^2 - 0.999718$, o neochlorogeno – 0.9997), tai patvirtina kiekinio nustatymo metodo tiesiškumą (4 lentelė).

4 lentelė. Analičių kalibracinių kreivių charakteristikos

<table>
<thead>
<tr>
<th>Analitės pavadinimas</th>
<th>Sulaikymo laikas (min)</th>
<th>Koreliacijos koeficientas</th>
<th>Kalibracinės kreivės lygtis</th>
<th>Tiesiškumo ribos (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorogeno rūgšties</td>
<td>11,26</td>
<td>0,999718</td>
<td>$Y=4.26\times10^7x - 1.40\times10^4$</td>
<td>0,2 – 0,001875</td>
</tr>
<tr>
<td>Neochlorogeno rūgšties</td>
<td>8,32</td>
<td>0,9997</td>
<td>$Y=3.62\times10^4 - 6.33\times10^3$</td>
<td>0,003 – 0,11</td>
</tr>
</tbody>
</table>

3.4. Junginių identifikavimas

Junginių identifikavimas buvo atliekamas tuo pačiu metu, kai buvo įrodinėjama metodikos specifiškumas. Polifenolinių rūgščys identifikuojamos pagal standartinių junginių sulaikymo laikus ir
UV adsorbcinių spektrų 210 – 400nm bangos ilgijė duomenis. Solidago gigantea ir Solidago virgaurea ekstraktai buvo tiriami ESC metodu. Chromatogramose (15pav.) buvo nustatyta kelios polifenolinių rūgštys, tačiau identifikuota tik chlorogeno ir neochlorogeno, kurios vėliau buvo kiekybiškai apskaičiuotos.

3.5. Fenolinių rūgščių kiekybinis nustatymas

Kiekybinė analizė atlikta su metanoliniais lapų ir žiedų ekstraktais. Buvo analizuojami šešiolika pavyzdžių, kuriuos sudarė šeši Solidago virgaurea pavyzdžiai ir dešimt Solidago gigantea pavyzdžių. Kiekybiškai įvertintos du polifenolinių rūgštys: neochlorogeno ir chlorogeno. Grafiniame vaizde pateikti suminiai identifikuotų polifenolinių rūgščių kiekiai (mg/g) skirtingose žaliavose (16pav., 17pav.).

S. virgaurea žiedų žaliavos ekstrakte chlorogeno rūgšties aptiktą 7,9 mg/ml, o neochlorogeno rūgšties – 0,47 mg/ml. Šių rūgščių kiekis skyrėsi žiedų ir lapų žaliavos ekstraktuose. Lapų žaliavos ekstrakte buvo aptiktos didesnės chlorogeno rūgšties – 18,26 mg/ml, ir neochlorogeno rūgšties – 0,76 mg/ml.

S. gigantea žiedų žaliavoje šių rūgščių kiekiai atitinkamai buvo 10,22 mg/ml ir 0,11 mg/ml. Lapų žaliavos ekstrakte taip pat kaip ir S. virgaurea aptiktis didesni kiekiai polifenolinių rūgščių lyginant su žiedų žaliavos ekstraktu. Lapų žaliavos ekstrakte chlorogeno rūgšties kiekis buvo 36,75 mg/ml, o neochlorogeno rūgšties kiekis – 0,28 mg/ml.
16pav. Žieduose sukauptų polifenolinių rūgšių kiekis (mg/g)

17pav. Lapuose sukauptų polifenolinių rūgšių kiekis (mg/g)

Statistiškai apdorotus duomenis galima teigti, kad chlorogeno rūgšties kiekis yra žymiai didesnis už neochlorageno rūgšties kiekį (p < 0,05). Šis reikšmingumas buvo pastebimas abiejose Solidago rūšies žaliavose.

Statistinė analizė taip pat buvo atliekama tarp lapų ir žiedų ekstraktuose aptiktų neochlorageno ir chlorogeno rūgščių kiekių. Buvo nustatyta, kad lapų ekstraktuose yra didesni šių rūgščių kiekiai, lyginant su žiedų ekstraktuose kaupiamų rūgščių kiekiais ir šie duomenys yra statistiškai reikšmingi (p < 0,05).

Tačiau pastebima tendencija, kad S.gigantea žaliavoje buvo sukaupta didesni kiekiai chlorageno rūgšties lyginant su S.virgaurea. O neochlorogeno rūgšties – priešingai, daugiau aptinkama S.virgaurea lyginant su S.gigantea (16pav., 17pav.).
Tyrimo metu buvo naudota žaliava iš skirtingų Vilniaus regiono vietų (Riešės, Santariškių, Trakų Vokės, Nemenčinės). Palyginus skitingų augalinių žaliavų (*Solidago virgaurea* ir *Solidago gigantea*) sukaupčius polifenolinių rūgščių kiekius buvo gauti skirtinę duomenys. Nors iš grafinių vaizdų matoma, kad Santariškėse augančiose *Solidago gigantea* yra sukaupta didesni kiekiai chlorogeno rūgšties nei kituose Vilniaus regionuose, tačiau statistinio reikšmingumo nepavyko nustatyti (p > 0,05). Šio statistinio reikšmingumo nepavyko nustatyti ir *Solidago virgaurea* žaliavoje. (18pav., 19pav.). Taip pat buvo lyginama ir neochlorogeno rūgšties kiekia skirtinguose Vilniaus regionuose sukauptos žaliavos. Iš grafinio vaizdo galime matyti, kad šios rūgšties kiekiai yra maždaug vienodi visuose tirtuose regionuose.

18pav. Chlorogeno rūgšties kiekis skirtinguose regionuose (mg/g)

19pav. Neochlorogeno rūgšties kiekis skirtinguose regionuose (mg/g)
Atliekant ryštenės žaliavos analizę buvo nustatytas kiekinė žaliavoje esančių polifenolinių rūgščių sudėtis. Buvo įvestas lapų ir žiedų žaliavoje rastų rūgščių kiekį ir apskaičiuota procentinė sudėtis. Rezultatai pateikiami lentelėse (5 lentelė, 6 lentelė).

5 lentelė. Solidago virgaurea kiekinė sudėtis

<table>
<thead>
<tr>
<th>Pavadinimas</th>
<th>Koncentracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/g</td>
</tr>
<tr>
<td>Chlorageno rūgštis</td>
<td>13,08</td>
</tr>
<tr>
<td>Neochlorageno rūgštis</td>
<td>0,615</td>
</tr>
</tbody>
</table>

6 lentelė. Solidago gigantea kiekinė sudėtis

<table>
<thead>
<tr>
<th>Pavadinimas</th>
<th>Koncentracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/g</td>
</tr>
<tr>
<td>Chlorageno rūgštis</td>
<td>23,49</td>
</tr>
<tr>
<td>Neochlorageno rūgštis</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Palyginus su kitų šalių moksliniuose straipsniuose pateikiamais chlorogeno ir neochlorogeno rūgščių kiekiais galime teigti, kad Lietuvoje augančiose ryštenėse šių polifenolinių rūgščių kiekiai yra žymiai didesnis ir gali būti reikšmingi panaudojant šią žaliavą farmacinių preparatų gamyboje. Visuose straipsniuose buvo skelbiama, kad *Solidago virgaurea* žaliavoje chlorogeno rūgšties kiekis yra vos 0,2 – 0,4%, o atlikus tyrimą išsiaiškinta, kad Lietuvoje natūraliai augančios šios rūšies žaliavoje chlorogeno rūgšties kiekis siekia net 1,31%. Šie duomenys yra reikšmingi, nes chlorogeno rūgštis yra viena iš pagrindinių biologiskai aktyvių junginių, dėl kurių ryštenės žaliava pasižymi savo farmakologinėmis savybėmis, tokiomis kaip diurezinis, antivėžinis ir antioksidacinis aktyvumas.

Apibendrinant atliktą tyrimą buvo gauti rezultatai, kad Lietuvoje augančiose ryštenės žaliavose sukaupta chlorogeno ir neochlorogeno rūgščių kiekiai yra reikšmingai dideli ir ši žaliava yra potenciali farmacinių preparatų gamybai.
IŠVADOS

2. Optimizuota ir validuota metodika kiekybiniam polifenolinių rūgščių nustatymui naudojant efektyviosios skysčių chromatografijos metodiką su fotodiodų matricos detektoriumi. Pasirinkta kolonėlė: 4,6×150 mm, 3 μm YMC, kolonėlės temperatūra – 25 ºC, injekcijos tūris: 10 μl. Fotodiodų matricos detektorius Waters 996 PDA.

4. Validuota metodika pritaikyta rykštenės augalinės žaliavos kiekybiniam nustatymui. Įvertinus duomenis kiekybiškai Solidago virgaurea chlorogeno rūgštis yra 1.31%, o neochlorogeno rūgštis – 0.06%. Solidago gigantea chlorogeno rūgštis procentinis kiekis yra 2.35%, o neochlorageno rūgštis – 0.02%.
LITERATŪROS SĄRAŠAS

